首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic beta-cells show bursting electrical activity with a wide range of burst periods ranging from a few seconds, often seen in isolated cells, over tens of seconds (medium bursting), usually observed in intact islets, to several minutes. The phantom burster model [Bertram, R., Previte, J., Sherman, A., Kinard, T.A., Satin, L.S., 2000. The phantom burster model for pancreatic beta-cells. Biophys. J. 79, 2880-2892] provided a framework, which covered this span, and gave an explanation of how to obtain medium bursting combining two processes operating on different time scales. However, single cells are subjected to stochastic fluctuations in plasma membrane currents, which are likely to disturb the bursting mechanism and transform medium bursters into spikers or very fast bursters. We present a polynomial, minimal, phantom burster model and show that noise modifies the plateau fraction and lowers the burst period dramatically in phantom bursters. It is therefore unlikely that slow bursting in single cells is driven by the slow phantom bursting mechanism, but could instead be driven by oscillations in glycolysis, which we show are stable to random ion channel fluctuations. Moreover, so-called compound bursting can be converted to apparent slow bursting by noise, which could explain why compound bursting and mixed Ca(2+) oscillations are seen mainly in intact islets.  相似文献   

2.
3.
The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells.  相似文献   

4.
5.
6.
7.
8.
Vmw65, a herpes simplex virus type 1 (HSV-1) tegument protein, in association with cellular proteins, transactivates viral immediate early genes. In order to examine the role of Vmw65 during acute and latent infection in vivo, a mutant virus (in1814), containing a 12-base-pair insertion in the Vmw65 gene, which lacks the transactivating function of Vmw65 (C. I. Ace, T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston, J. Virol. 63:2260-2269, 1989) was examined in mice. Following corneal inoculation, the parental virus (17+) and the revertant (1814R) replicated effectively in eyes and trigeminal ganglia with 30 to 60% mortality. At either equal PFU or equal particle numbers, in1814 did not replicate in trigeminal ganglia and none of the infected mice died. Although in1814 did not replicate following corneal inoculation, it established latent infection in trigeminal ganglia. HSV-1 in1814 reactivated at explant as efficiently and rapidly as did 17+ and 1814R. Even low amounts of inoculated in1814 (10(2) PFU) were sufficient to establish latent infection in some animals. Since infectious in1814 was not detected at any time in mouse trigeminal ganglia, in1814 provided a unique opportunity to determine how soon after primary infection latency begins. Latent in1814 infection was detected shortly after virus reached the sensory ganglia, between 24 to 48 h postinfection. Thus, though Vmw65 may be required for lytic infection in vivo, it is dispensable for the establishment of and reactivation from latent infection. These data support the hypotheses that the latent and lytic pathways of HSV-1 are distinct and that latency is established soon after infection without a requirement for viral replication. However, the levels of Vmw65 reaching neuronal nuclei may be a critical determinant of whether HSV-1 forms a lytic or latent infection.  相似文献   

9.
The retrograde fluorescent labeling technique reveals that trigeminal projections to the ventroposteromedial nucleus of the thalamus (VPM) of the rat originate from the main sensory nucleus (MSN) of the trigeminal and subnuclei interpolaris (V1) and caudalis (Vc) of the spinal trigeminal nucleus. These projections are predominantly contralateral; however, the presence of a few ipsilateral labeled cells in MSN suggests an uncrossed trigeminothalamic pathway. Trigeminocerebellar fibers projecting to the paramedian lobule (PML) of the cerebellar cortex are located in Vi and caudal subnucleus oralis (Vo). This is principally an ipsilateral pathway, but several bisbenzimide-labeled cells are present in contralateral Vi. The most notable finding occurred after paired injections of Evans Blue into VPM and bisbenzimide into PML, demonstrating neurons in Vi with divergent projections to both structures. The presence of this type of projection was not found in mice (Steindler: J. Comp. Neurol. 237:155-175, 1985) and has not been reported in other species.  相似文献   

10.
Reviews     
Boysen, S. T., & E. J. Capaldi, eds. (1993): The development of numerical competence: animal and human models (Entwicklung des Zählvermögens bei Menschen und Tieren). Müller, H. M. (1993): Neuronale Verarbeitung von Seitenlinieninformationen im Mittelhirn eines Welses (Processing of lateral-line information in the midbrain of a South-American catfish). Bonner, J. T. (1993): Life cycles. Reflections of an evolutionary biologist (Lebenszyklen. Adams, J. & T. McShane (1992): The myth of wild Africa. Conservation without illusion (Der Mythos des wilden Afrikas. Dittami, J., ed. (1993): Signale und Kommunikation: Mechanismen des Informationsaustauschs in lebenden Systemen (Signals and Communication: the mechanisms of information exchange in living systems).  相似文献   

11.
This paper examines how noise interacts with the non-linear dynamical mechanisms of neuronal stimulus. We study the spike trains generated by a minimal Hodgkin-Huxley type model of a cold receptor neuron. The distributions of interspike intervals(ISIs) of purely deterministic simulations exhibit considerable differences compared to the noisy ones. We quantify the effect of noise using ISI return plots and the ISI-distance recently proposed by Kreuz et al. (J Neurosci Meth, 165:151–161, 2007). It is shown that the spike trains of a cold receptor neuron are more strongly affected by noise for low temperatures than for high temperatures. This trend is also observed in both regimes of cold receptors: tonic firing(which occurs for low and high temperatures) and bursting (which occurs for intermediate temperatures).  相似文献   

12.
13.
Glucose triggers bursting activity in pancreatic islets, which mediates the Ca2+ uptake that triggers insulin secretion. Aside from the channel mechanism responsible for bursting, which remains unsettled, it is not clear whether bursting is an endogenous property of individual beta-cells or requires an electrically coupled islet. While many workers report stochastic firing or quasibursting in single cells, a few reports describe single-cell bursts much longer (minutes) than those of islets (15-60 s). We studied the behavior of single cells systematically to help resolve this issue. Perforated patch recordings were made from single mouse beta-cells or hamster insulinoma tumor cells in current clamp at 30-35 degrees C, using standard K+-rich pipette solution and external solutions containing 11.1 mM glucose. Dynamic clamp was used to apply artificial KATP and Ca2+ channel conductances to cells in current clamp to assess the role of Ca2+ and KATP channels in single cell firing. The electrical activity we observed in mouse beta-cells was heterogeneous, with three basic patterns encountered: 1) repetitive fast spiking; 2) fast spikes superimposed on brief (<5 s) plateaus; or 3) periodic plateaus of longer duration (10-20 s) with small spikes. Pattern 2 was most similar to islet bursting but was significantly faster. Burst plateaus lasting on the order of minutes were only observed when recordings were made from cell clusters. Adding gCa to cells increased the depolarizing drive of bursting and lengthened the plateaus, whereas adding gKATP hyperpolarized the cells and lengthened the silent phases. Adding gCa and gKATP together did not cancel out their individual effects but could induce robust bursts that resembled those of islets, and with increased period. These added currents had no slow components, indicating that the mechanisms of physiological bursting are likely to be endogenous to single beta-cells. It is unlikely that the fast bursting (class 2) was due to oscillations in gKATP because it persisted in 100 microM tolbutamide. The ability of small exogenous currents to modify beta-cell firing patterns supports the hypothesis that single cells contain the necessary mechanisms for bursting but often fail to exhibit this behavior because of heterogeneity of cell parameters.  相似文献   

14.
Bursting, beating, and chaos in an excitable membrane model.   总被引:8,自引:2,他引:6  
We have studied periodic as well as aperiodic behavior in the self-sustained oscillations exhibited by the Hodgkin-Huxley type model of Chay, T. R., and J. Keizer (Biophys. J., 1983, 42:181-190) for the pancreatic beta-cell. Numerical solutions reveal a variety of patterns as the glucose-dependent parameter kCa is varied. These include regimes of periodic beating (continuous spiking) and bursting modes and, in the transition between these modes, aperiodic responses. Such aperiodic behavior for a nonrandom system has been called deterministic chaos and is characterized by distinguishing features found in previous studies of chaos in nonbiophysical systems and here identified for an (endogenously active) excitable membrane model. To parallel the successful analysis of chaos in other physical/chemical contexts we introduce a simplified, but quantitative, one-variable, discrete-time representation of the dynamics. It describes the evolution of intracellular calcium (which activates a potassium conductance) from one spike upstroke to the next and exhibits the various modes of behavior.  相似文献   

15.
Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315-324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs.  相似文献   

16.
目的通过观察血管源性头痛清醒动物模型中Fos阳性细胞在三叉神经节及三叉神经脊束核尾侧亚核的分布情况,明确两种非甾体类抗炎药NSAID对乙酰氨基酚及布洛芬在头痛控制中,在颅内特定区域的作用机理。方法 30只雄性SD大鼠随机分为对照组(生理盐水组)、对乙酰氨基酚组、布洛芬组,每组给药后50 min分别给予频率为20 Hz、电流为3~5 mA和脉宽为0.25 ms的电刺激,刺激后给予大鼠灌注固定取脑,分别在颅内取三叉神经节及三叉神经脊束核尾侧亚核制作石蜡切片,进行免疫组织化学染色,利用Image J软件对阳性细胞进行计数统计。结果电刺激后盐水组与非甾体类药物组在双侧三叉神经节、三叉神经脊束核尾侧亚核Fos蛋白表达的差异具有显著统计学意义,对乙酰氨基酚组与布洛芬组在双侧三叉神经节、三叉神经脊束核尾侧亚核Fos蛋白表达未见统计学差异。结论给予非甾体类抗炎前后在双侧三叉神经节、三叉神经脊束核尾侧亚核的Fos表达的改变提示三叉神经节、三叉神经脊束核尾侧亚核参与了疼痛的传递和表达以及药物对疼痛控制的药理过程。  相似文献   

17.
Bursting oscillations are common in neurons and endocrine cells. One type of bursting model with two slow variables has been called ‘phantom bursting’ since the burst period is a blend of the time constants of the slow variables. A phantom bursting model can produce bursting with a wide range of periods: fast (short period), medium, and slow (long period). We describe a measure, which we call the ‘dominance factor’, of the relative contributions of the two slow variables to the bursting produced by a simple phantom bursting model. Using this tool, we demonstrate how the control of different phases of the burst can be shifted from one slow variable to another by changing a model parameter. We then show that the dominance curves obtained as a parameter is varied can be useful in making predictions about the resetting properties of the model cells. Finally, we demonstrate two mechanisms by which phase-independent resetting of a burst can be achieved, as has been shown to occur in the electrical activity of pancreatic islets.  相似文献   

18.
19.
We studied projections from the interstitial system of the spinal trigeminal tract (InSy-S5T) to the red nucleus of the mouse with retrograde tracers (fluorogold and latex microbeads impregnated with rhodamine and fluorescein). Injections in the magnocellular part of the red nucleus caused labeling of cells in the rostral, intermediate, and caudal paratrigeminal nucleus (Pa5), dorsal paramarginal nucleus (PaMD), insular trigemeo-lateral cuneate nucleus (I5CuL), and the trigeminal extension of the parvocellular reticular formation (5RPC). All projections were bilateral, but contralateral projections were stronger. The number of retrogradely labeled cells in the InSy-S5T in 3-, 6-, and 12-month-old mice was similar. Injections restricted to the parvocellular red nucleus did not label the nuclei of the InSy-S5T. This projection from the InSy-S5T to the red nucleus may mediate modulation of the facial muscles by pain and other sensory information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号