首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3D model of the voltage-dependent anion channel (VDAC)   总被引:7,自引:0,他引:7  
Eukaryotic porins are a group of membrane proteins whose best known role is to form an aqueous pore channel in the mitochondrial outer membrane. As opposed to the bacterial porins (a large family of protein whose 3D structure has been determined by X-ray diffraction), the structure of eukaryotic porins (also termed VDACs, voltage-dependent anion-selective channels) is still a matter of debate. We analysed the secondary structure of VDAC from the yeast Saccharomyces cerevisiae, the fungus Neurospora crassa and the mouse with different types of neural network-based predictors. The predictors were able to discriminate membrane β-strands, globular -helices and membrane -helices and localised, in all three VDAC sequences, 16 β-strands along the chain. For all three sequences the N-terminal region showed a high propensity to form a globular -helix. The 16 β-strand VDAC motif was thus aligned to a bacterial porin-derived template containing a similar 16 β-strand motif. The alignment of the VDAC sequence with the bacterial porin sequence was used to compute a set of 3D coordinates, which constitutes the first 3D prediction of a eukaryotic porin. All the predicted structures assume a β-barrel structure composed of 16 β-strands with the N-terminus outside the membrane. Loops are shorter in this side of the membrane than in the other, where two long loops are protruding. The shape of the pore varies between almost circular for Neurospora and mouse and slightly oval for yeast. Average values between 3 and 2.5 nm at the C-carbon backbone are found for the diameter of the channels. In this model VDAC shows large portions of the structure exposed on both sides of the membrane. The architecture we determine allows speculation about the mechanism of possible interactions between VDAC and other proteins on both sides of the mitochondrial outer membrane. The computed 3D model is consistent with most of the experimental results so far reported.  相似文献   

2.
The review outlines our current understanding of the role of porins, the proteins forming voltage-dependent anion channels (VDAC), in regulation of permeability of the outer mitochondrial membrane. Recent data on the porin structure, amino acid sequence, and isoforms are discussed. The existence of three different VDAC isoforms in mammalian cells suggests that each isoform may play a specific physiological role that remains unknown so far. Different model systems and methods used for studies of functional differences between VDAC isoforms are overviewed. Particular attention is paid to studies of mammalian VDAC isoforms by means of expression of the corresponding genes in yeast and human cells as well as creation of stem cell clones and animals with genetically deficient isoforms of VDAC. It is concluded that permeability of the outer membrane plays a crucial role in the mechanisms of metabolic regulation and that porins are vitally important in the physiology of mammals. The data on the functional role of the VDAC isoforms can be useful for under-standing the mechanisms of such pathologies as cancer, diabetes, and neuromuscular diseases.  相似文献   

3.
The human pathogen Neisseria gonorrhoeae induces host cell apoptosis during infection by delivering the outer membrane protein PorB to the host cell's mitochondria. PorB is a pore-forming beta-barrel protein sharing several features with the mitochondrial voltage-dependent anion channel (VDAC), which is involved in the regulation of apoptosis. Here we show that PorB of pathogenic Neisseria species produced by host cells is efficiently targeted to mitochondria. Imported PorB resides in the mitochondrial outer membrane and forms multimers with similar sizes as in the outer bacterial membrane. The mitochondria completely lose their membrane potential, a characteristic previously observed in cells infected with gonococci or treated with purified PorB. Closely related bacterial porins of non-pathogenic Neisseria mucosa or Escherichia coli remain in the cytosol. Import of PorB into mitochondria in vivo is independent of a linear signal sequence. Insertion of PorB into the mitochondrial outer membrane in vitro depends on the activity of Tom5, Tom20 and Tom40, but is independent of Tom70. Our data show that human VDAC and bacterial PorB are imported into mitochondria by a similar mechanism.  相似文献   

4.
Voltage-dependent anion channels (VDACs, also known as mitochondrial porins) are small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. Mammals harbor three distinct VDAC isoforms, with each protein sharing 65-70% sequence identity. Deletion of the yeast VDAC1 gene leads to conditional lethality that can be partially or completely complemented by the mammalian VDAC genes. In vitro, VDACs conduct a variety of small metabolites and in vivo they serve as a binding site for several cytosolic kinases involved in intermediary metabolism, yet the specific physiologic role of each isoform is unknown. Here we show that mouse embryonic stem cells lacking each isoform are viable but exhibit a 30% reduction in oxygen consumption. VDAC1 and VDAC2 deficient cells exhibit reduced cytochrome c oxidase activity, whereas VDAC3 deficient cells have normal activity. These results indicate that VDACs are not essential for cell viability and we speculate that reduced respiration in part reflects decreased outer membrane permeability for small metabolites necessary for oxidative phosphorylation.  相似文献   

5.
On the Structure and Gating Mechanism of the Mitochondrial Channel, VDAC   总被引:3,自引:0,他引:3  
There is considerable evidence that the voltage-gated mitochondrial channel VDAC forms a -barrel pore. Inferences about the number and tilt of -strands can be drawn from comparisons with bacterial -barrel pores whose structures have been determined by x-ray crystallography. A structural model for VDAC is proposed (based on sequence analysis and electron crystallography) in which the open state is like that of bacterial porins with several important differences. Because VDAC does not occur as close-packed trimers, there are probably fewer interpore contacts than in the bacterial porins. VDAC also appears to lack a large, fixed intraluminal segment and may not have as extensive a region of uniformly 35°-tilted -strands as do the bacterial porins. These structural differences would be expected to render VDAC's -barrel less stable than its bacterial counterparts, making major conformational changes like those associated with gating more energetically feasible. A possible gating mechanism is suggested in which movement of the N-terminal -helix out of the lumen wall triggers larger-scale structural changes.  相似文献   

6.
The role of voltage-dependent anion channels (VDAC/porins) of the mitochondrial outer membrane in the regulation of cell metabolism is assessed using an experimental model of ethanol toxicity in cultured hepatocytes. It is demonstrated that ethanol inhibits the phosphorylating and the uncoupled mitochondrial respiration, decreases the accessibility of mitochondrial adenylate kinase in the intermembrane space, and suppresses ureagenic respiration in the cells. Treatment with digitonin at high concentrations (>80 μM)—which creates pores in the mitochondrial outer membrane, allowing bypass of closed VDAC—restores all the processes suppressed with ethanol. It is concluded that the effect of ethanol in hepatocytes leads to global loss of mitochondrial function because of closure of VDAC, which limits the free diffusion of metabolites into the intermembrane space. Our studies also reveal the role of VDAC in the regulation of liver-specific intracellular processes such as ureagenesis. The data obtained can be used in development of pharmaceuticals that would prevent VDAC closure in mitochondria of ethanol-oxidizing liver, thus protecting liver tissue from the hepatotoxic action of alcohol.  相似文献   

7.
The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.  相似文献   

8.
Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

9.
Voltage-dependent anion channels (VDACs) have originally been characterized as mitochondrial porins. Starting in the late 1980s, however, evidence began to accumulate that VDACs can also be expressed in plasma membranes. In this review, we briefly revisit the historical milestones in the discovery of plasma membrane-bound VDAC, and we critically analyze the evidence for VDAC plasma membrane localization obtained from various purification strategies and recently from plasma membrane proteomics studies. We discuss the possible biological function and relevance of VDAC in the plasma membrane and finally discuss a hypothetical model of how VDAC may be targeted to the plasma membrane.  相似文献   

10.
The outer mitochondrial membrane receptor for hexokinase binding has been identified as the VDAC protein, also known as mitochondrial porin. The ability of the receptor to bind hexokinase is inhibited by pretreatment with dicyclohexylcarbodiimide (DCCD). At low concentrations, DCCD inhibits hexokinase binding by covalently labeling the VDAC protein, with no apparent effect on VDAC channel-forming activity. The stoichiometry of [14C]-DCCD labeling is consistent with one to two high-affinity DCCD-binding sites per VDAC monomer. A comparison between the sequence of yeast VDAC and a conserved sequence found at DCCD-binding sites of several membrane proteins showed two sites where the yeast VDAC amino acid sequence appears to be very similar to the conserved DCCD-binding sequence. Both of these sites are located near the C-terminal end of yeast VDAC (residues 257–265 and 275–283). These results are consistent with a model in which the C-terminal end of VDAC is involved in binding to the N-terminal end of hexokinase.  相似文献   

11.
Porin or voltage-dependent anion-selective channel (VDAC) is the main protein responsible for the high permeability of the outer mitochondrial membrane. The mitochondrial porin is mainly composed of sided -strands, in analogy with bacterial porin, whose structure has been resolved at 1.8 Å resolution. In mitochondrial porins the N-terminal region forms an amphipathic -helix, a structure conserved in organisms very distant from the evolutionary point of view. This part of the protein is exposed to the water phase, as demonstrated by ELISA assays. Various extramembranous loops have been identified by specific proteolytic cleavages. These overall, combined results were used to draw a model of the transmembrane arrangement of mammalian porin. This model is compared to other mitochondrial and bacterial porin models.  相似文献   

12.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

13.
Eukaryotic porins or VDACs (Voltage-Dependent Anion-selective Channels) are integral membrane proteins forming large hydrophilic pores. Three functioning genes for VDAC isoforms have been detected in mouse and the corresponding cDNAs are known also in humans. Tissue-specific VDAC isoform 1 (HVDAC1) deficiency in human skeletal muscle is responsible of a rare mitochondrial encephalomyopathy, fatal in childhood. Since coding sequences are not affected in the patient, we focused our interest in the gene structure. HVDAC1 and 2 have been previously mapped at chromosomes Xq13-21 and 21, respectively. Screening of an human chromosome X cosmid library resulted only in the isolation of processed pseudogenes, finely mapped at Xq22 and Xp11.2. Here, we report the mapping of HVDAC1 to chromosome 5q31 and HVDAC2 to chromosome 10q22 by FISH. Exon/intron probes, designed on the basis of the mouse gene structures, were obtained by long extension PCR amplification using the whole genomic DNA as a template. The sequence of the probe extremities clearly pointed to a genuine VDAC genomic sequence. Human and mouse regions where VDAC 1 and 2 genes were mapped are known to be synthetic, thus reinforcing the mapping of the human homologues.  相似文献   

14.
The outer membrane of Gram‐negative bacteria protects the cell against bactericidal substances. Passage of nutrients and waste is assured by outer membrane porins, beta‐barrel transmembrane channels. While atomic structures of several porins have been solved, so far little is known on the supramolecular structure of the outer membrane. Here we present the first high‐resolution view of a bacterial outer membrane gently purified maintaining remnants of peptidoglycan on the perisplasmic surface. Atomic force microscope images of outer membrane fragments of the size of ~50% of the bacterial envelope revealed that outer membrane porins are by far more densely packed than previously assumed. Indeed the outer membrane is a molecular sieve rather than a membrane. Porins cover ~70% of the membrane surface and form locally regular lattices. The potential role of exposed aromatic residues in the formation of the supramolecular assembly is discussed. Finally, we present first structural data of the outer membrane porin from the marine Gram‐negative bacteria Roseobacter denitrificans, and we perform a sequence alignment with porins of known structure.  相似文献   

15.
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts all contain transmembrane β-barrel proteins. These β-barrel proteins serve essential functions in cargo transport and signaling and are also vital for membrane biogenesis. They have also been adapted to perform a diverse set of important cellular functions including acting as porins, transporters, enzymes, virulence factors and receptors. Recent structures of transmembrane β-barrels include that of a full length autotransporter (EstA), a bacterial heme transporter complex (HasR), a bacterial porin in complex with several ligands (PorB), and the mitochondrial voltage-dependent anion channel (VDAC) from both mouse and human. These represent only a few of the interesting structures of β-barrel membrane proteins recently elucidated. However, they demonstrate many of the advancements made within the field of transmembrane protein structure in the past few years.  相似文献   

16.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1(-/-) mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1(-/-) mice exhibit impaired glucose tolerance whereas vdac3(-/-) mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1(-/-)/vdac3(-/-)) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance.  相似文献   

17.
K Pohlmeyer  J Soll  R Grimm  K Hill    R Wagner 《The Plant cell》1998,10(7):1207-1216
The pea chloroplastic outer envelope protein OEP24 can function as a general solute channel. OEP24 is present in chloroplasts, etioplasts, and non-green root plastids. The heterologously expressed protein forms a voltage-dependent, high-conductance (Lambda = 1.3 nS in 1 M KCl), and slightly cation-selective ion channel in reconstituted proteoliposomes. The highest open probability (P open approximately 0. 8) is at 0 mV, which is consistent with the absence of a transmembrane potential across the chloroplastic outer envelope. The OEP24 channels allow the flux of triosephosphate, dicarboxylic acids, positively or negatively charged amino acids, sugars, ATP, and Pi. Structure prediction algorithms and circular dichroism spectra indicate that OEP24 contains seven amphiphilic beta strands. The primary structure of OEP24 shows no homologies to mitochondrial or bacterial porins on a primary sequence basis, and OEP24 is functionally not inhibited by cadaverine, which is a potent inhibitor of bacterial porins. We conclude that OEP24 represents a new type of solute channel in the plastidic outer envelope.  相似文献   

18.
The voltage-dependent anion-selective channel of the outer mitochondrial membrane provides a unique system in which to study the molecular basis of voltage gating of ion flow. We have cloned and sequenced acDNA coding for this protein in yeast. From the derived amino acid sequence, we have generated a preliminary model for the secondary structure of the protein which suggests that the protein forms a -barrel type structure. Comparison of the VDAC amino acid sequence with that of the bacterial porins has indicated that the two classes of molecules appear to be unrelated.  相似文献   

19.
An alternative topological model for Escherichia coli OmpA.   总被引:3,自引:1,他引:2  
The current topological model for the Escherichia coli outer membrane protein OmpA predicts eight N-terminal transmembrane segments followed by a long periplasmic tail. Several recent reports have raised serious doubts about the accuracy of this prediction. An alternative OmpA model has been constructed using (1) computer-aided predictions developed specifically to predict topology of bacterial outer membrane porins, (2) the results of two reports that identified sequence homologies between OmpA and other peptidoglycan-associated proteins, and (3) biochemical, immunochemical, and genetic topological data on proteins of the OmpA family provided by numerous previous studies. The new model not only agrees with the varied experimental data concerning OmpA but also provides an improved understanding of the relationship between the structure and the multifunctional role of OmpA in the bacterial outer membrane.  相似文献   

20.
VDACs three isoforms (VDAC1, VDAC2, VDAC3) are integral proteins of the outer mitochondrial membrane whose primary function is to permit the communication and exchange of molecules related to the mitochondrial functions. We have recently reported about the peculiar over-oxidation of VDAC3 cysteines. In this work we have extended our analysis, performed by tryptic and chymotryptic proteolysis and UHPLC/High Resolution ESI-MS/MS, to the other two isoforms VDAC1 and VDAC2 from rat liver mitochondria, and we have been able to find also in these proteins over-oxidation of cysteines. Further PTM of cysteines as succination has been found, while the presence of selenocysteine was not detected. Unfortunately, a short sequence stretch containing one genetically encoded cysteine was not covered both in VDAC2 and in VDAC3, raising the suspect that more, unknown modifications of these proteins exist. Interestingly, cysteine over-oxidation appears to be an exclusive feature of VDACs, since it is not present in other transmembrane mitochondrial proteins eluted by hydroxyapatite. The assignment of a functional role to these modifications of VDACs will be a further step towards the full understanding of the roles of these proteins in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号