首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects are reported here of Benzoxazolin-2(3H)-one (BOA), an allelopathic compound, on plant water relations, growth, components of chlorophyll fluorescence, and carbon isotope discrimination in lettuce (Lactuca sativa L.). Lettuce seedlings were grown in 1:1 Hoagland solution in perlite culture medium in environmentally controlled glasshouse. After 30 days, BOA was applied at concentration of 0.1, 0.5, 1.0 and 1.5 mM and distilled water (control). BOA, in the range (0.1–1.5 mM), decreased the shoot length, root length, leaf and root fresh weight. Within this concentration range, BOA significantly reduced relative water content while leaf osmotic potential remained unaltered. Stress response of lettuce was evaluated on the basis of six days of treatment with 1.5 mM BOA by analyzing several chlorophyll fluorescence parameters determined under dark-adapted and steady state conditions. There was no change in initial fluorescence (Fo) in response to BOA treatment while maximum chlorophyll fluorescence (Fm) was significantly reduced. BOA treatment significantly reduced variable fluorescence (Fv) on first, second, third, fourth, fifth and sixth day. Quantum efficiency of open PSII reaction centers (Fv/Fm) in the dark-adapted state was significantly reduced in response to BOA treatment. Quantum yield of photosystem II (ΦPSII) electron transport was significantly reduced because of decrease in the efficiency of excitation energy trapping of PSII reaction centers. Maximum fluorescence in light-adapted leaves (F′m) was significantly decreased but there was no change in initial fluorescence in light-adapted state (F′o) in response to 1.5 mM BOA treatment. BOA application significantly reduced photochemical fluorescence quenching (qP) indicating that the balance between excitation rate and electron transfer rate has changed leading to a more reduced state of PSII reaction centers. Non photochemical quenching (NPQ) was also significantly reduced by BOA treatment on third, fourth and fifth day. BOA had dominant effect on C isotope ratios (δ13C) that was significantly less negative (?26.93) at 1.0 mM concentration as compared to control (?27.61). Carbon isotope discrimination (Δ13C) values were significantly less (19.45) as compared to control (20.17) at 1.0 mM. BOA also affect ratio of intercellular to air CO2 concentration (ci/ca) that was significantly less (0.66) as compared to control (0.69) when treated with 1.0 mM BOA. Protein content of lettuce leaf tissue decreased under BOA treatment at 1.5 mM concentration as compared to control.  相似文献   

2.
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l−1, 400 mg l−1, and 800 mg l−1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate (P N) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QAEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration (C i) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l−1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants.  相似文献   

3.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

4.
Simultaneous measurements of chlorophyll (Chl) fluorescence and CO2 assimilation (A) in Vicia faba leaves were taken during the first weeks of growth to evaluate the protective effect of 24-epibrassinolide (EBR) against damage caused by the application of the herbicide terbutryn (Terb) at pre-emergence. V. faba seeds were incubated for 24 h in EBR solutions (2 × 10−6 or 2 × 10−5 mM) and immediately sown. Terb was applied at recommended doses (1.47 or 1.96 kg ha−1) at pre-emergence. The highest dose of Terb strongly decreased CO2 assimilation, the maximum quantum yield of PSII photochemistry in the dark-adapted state (F V/F M), the nonphotochemical quenching (NPQ), and the effective quantum yield (ΔF/FM) during the first 3–4 weeks after plant emergence. Moreover, Terb increased the basal quantum yield of nonphotochemical processes (F 0/F M), the degree of reaction center closure (1 − q p), and the fraction of light absorbed in PSII antennae that was dissipated via thermal energy dissipation in the antennae (1 − FV/FM). The herbicide also significantly reduced plant growth at the end of the experiment as well as plant length, dry weight, and number of leaves. The application of EBR to V. faba seeds before sowing strongly diminished the effect of Terb on fluorescence parameters and CO2 assimilation, which recovered 13 days after plant emergence and showed values similar to those of control plants. The protective effect of EBR on CO2 assimilation was detected at a photosynthetic photon flux density (PFD) of 650 μmol m−2 s−1 and the effect on ΔF/FM and photosynthetic electron transport (J) was detected under actinic lightings up to 1750 μmol m−2 s−1. The highest dose of EBR also counteracted the decrease in plant growth caused by Terb, and plants registered the same growth values as controls.  相似文献   

5.
This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L−1. Fluorescence measurements showed that diluted cultures (1–2 g DW L−1) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5–12.5 g DW L−1, which gave a maximum daylight productivity of up to 55 g dry biomass m−2 day−1. A midday depression of maximum PSII photochemical yield (F v/F m) of 20–30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F v/F m indicated low-light acclimated or photoinhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s−1) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.  相似文献   

6.
In the present study we explored the possibility of assessing the allocation of photons absorbed by photosystem II (PSII) antennae to thermal energy dissipation and photosynthetic electron transport in leaves of several plant species under field conditions. Changes in chlorophyll fluorescence parameters were determined in situ over the course of an entire day in the field in sun-exposed leaves of two species with different maximal rates of photosynthesis, Helianthus annuus (sunflower) and Vinca major. Leaves of Vinca minor (periwinkle) growing in a deeply shaded location were also monitored. We propose using diurnal changes in the efficiency of open PSII centers (F′v/F′m) in these sun and shade leaves to (a) assess diurnal changes in the allocation of absorbed light to photochemistry and thermal energy dissipation and, furthermore, (b) make an estimate of changes in the rate of thermal energy dissipation, an analogous expression to the rate of photochemistry. The fraction of light absorbed in PSII antennae that is dissipated thermally (D) is proposed to be estimated from D = 1-F′v/F′m, in analogy to the widely used estimation of the fraction of light absorbed in PSII antennae (P) that is utilized in PSII photochemistry from P = F′v/F′m× qP (where qP is the coefficient for photochemical quenching; Genty, B., Briantais, J.-M. & Baker, N. R. 1989. Biochim. Biophys. Acta 990: 87-92). The rate of thermal dissipation is consequently given by D × PFD (photon flux density), again in analogy to the rate of photochemistry P × PFD, both assuming a matching behavior of photosystems I and II. Characterization of energy dissipation from the efficiency of open PSII centers allows an assessment from a single set of measurements at any time of day; this is particularly useful under field conditions where the fully relaxed reference values of variable or maximal fluorescence needed for the computation of nonphotochemical quenching may not be available. The usefulness of the assessment described above is compared with other currently used parameters to quantify nonphotochemical and photochemical chlorophyll fluorescence quenching.  相似文献   

7.

Maize is a low-temperature (LT)-sensitive plant and its physiological responses towards LT of temperate regions developed is an adaptive trait. To further our understanding about the response of maize to LT at the physiological and photosynthesis level, we conducted Infrared Gas Analysis (IRGA using LICOR6400-XT in 45-day-old grown two maize genotypes, one from temperate region (Gurez-Kashmir Himalayas), viz., Gurez local (Gz local), and another from tropics (Gujarat), viz., GM6. This study was carried out to evaluate the underlying physiological mechanisms in the two differentially temperature-tolerant maize genotypes. Net photosynthetic rate (A/PN), 18.253 in Gz local and 25.587 (µmol CO2 m?2 s?1) in GM6; leaf conductance (gs), 0.0102 in Gz local and 0.0566 (mmol H2O m?2 s?1) in GM6; transpiration rate (E), 0.5371 in Gz local and 2.9409 (mmol H2O m?2 s?1) in GM6; and water use efficiency (WUE), 33.9852 in Gz local and 8.7224 (µmol CO2 mmol H2O?1) in GM6, were recorded under ambient conditions. Also, photochemical efficiency of photosystem II (PSII) (Fv/Fm), 0.675 in Gz local and 0.705 in GM6; maximum photochemical efficiency (Fv′/Fm′), 0.310234 in Gz local and 0.401391 in GM6; photochemical quenching (qP), 0.2375 in Gz local and 0.2609 in GM6; non-photochemical quenching (NPQ), 2.0036 in Gz local and 1.1686 in GM6; effective yield of PSII (ФPSII), 0.0789 in Gz local and 0.099 in GM6; and electron transport rate (ETR), 55.3152 in Gz local and 68.112 in GM6, were also evaluated in addition to various response curves, like light intensities and temperature. We observed that light response curves show the saturation light intensity requirement of 1600 µmol for both the genotypes, whereas temperature response curves showed the optimum temperature requirement for Gz local as 20 °C and for GM6 it was found to be 35 °C. The results obtained for each individual parameter and other correlational studies indicate that IRGA forms a promising route for quick and reliable screening of various stress-tolerant valuable genotypes, forming the first study of its kind.

  相似文献   

8.
Basil (Ocimum basilicum L., cultivar Genovese) plants were grown in Hoagland solution with or without 50 mM NaCl or 25 mM Na2SO4. After 15 days of treatment, Na2SO4 slowed growth of plants as indicated by root, stem and leaf dry weight, root length, shoot height and leaf area, and the effects were major of those induced by NaCl. Photosynthetic response was decreased more by chloride salinity than by sulphate. No effects in both treatments on leaf chlorophyll content, maximal efficiency of PSII photochemistry (F v/F m) and electron transport rate (ETR) were recorded. Therefore, an excess of energy following the limitation to CO2 photoassimilation and a down regulation of PSII photochemistry was monitored under NaCl, which displays mechanisms that play a role in avoiding PSII photodamage able to dissipate this excess energy. Ionic composition (Na+, K+, Ca2+, and Mg2+) was affected to the same extent under both types of salinity, thus together with an increase in leaves Cl, and roots SO4 2− in NaCl and Na2SO4-treated plants, respectively, may have resulted in the observed growth retardation (for Na2SO4 treatment) and photosynthesis activity inhibition (for NaCl treatment), suggesting that those effects seem to have been due to the anionic component of the salts.  相似文献   

9.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

10.
Light-saturated net leaf photosynthesis (Asat), CO2 response curves (A/Ci), current photochemical capacity (Fv/Fm) and pigment contents were measured in leaves of Populus nigra (Clone T107) which had been exposed to ozone stress in open-top chambers for the entire growth period. Surprisingly, not only elevated (ao+, i.e. ambient air + 50 mm3 m?3 ozone) but also ambient (aa) ozone concentrations led to a reduction in Asat, in comparison with leaves exposed to air containing almost no ozone (cf?, i.e. charcoal filtered ambient air). The very small change in leaf conductance (g1) indicated that the decrease in Asat was not due to stomatal limitation. This finding was supported by the fact that, a decrease in carboxylation efficiency (CE) correlated with a loss in Asat. In comparison to cf? leaves, aa leaves showed no change in current photochemical capacity (Fv/Fm) throughout the whole experiment. However, a marked decline in Fv/Fm in ao+ leaves was observed at a time when Asat and CE were already decreased by about 45% and 60% respectively. As the chlorophyll b content of leaves is known to correlate with the amount of LHC and PSII centres, it was used to normalize fluorescence parameters in relation to PSII centres present. The normalized values for Fm and F0 increased with the dosage of ozone in ao+ leaves but not in aa leaves, indicating a change of the pigment content of PSII in the former, but not in the latter. These data led to the conclusion that ozone interacts primarily with components of the Calvin cycle, which results in a decrease in Asat, with subsequent feedback on the current photochemical capacity of PSII centres.  相似文献   

11.
We studied carotenoid composition and chlorophyll fluorescence in two-year-old needles from Siberian spruce (Picea obovata (L.) Karst.), Siberian fir (Abies sibirica L.), and common juniper (Juniperus communis L.). The highest values of maximum PSII photochemical activity (F v/F m) equaling 0.82–0.85 were observed in July–September. The decrease in F v/F m in December–March was more pronounced in juniper (down to 0.15) than in spruce and fir (0.45–0.50). In May, we observed a nearly complete recovery in maximum PSII photochemical activity in fir and spruce (0.72–0.77), while in juniper, the F v/F m value was notably lower (0.65–0.67). The amount of thermal dissipation of energy absorbed by PSII LHC did not exceed 30% in summer and equaled 60–90% in winter and early spring. The carotenoid pool consisted mainly of xanthophylls, among which lutein (70%), neoxanthin (7–10%), and a violaxanthin cycle (VXC) component — violaxanthin (3–15%) were constantly present. The accumulation of two other VXC pigments—zeaxanthin and antheraxanthin, was noted in December–March. In July, these xanthophylls were not identified. We discovered a direct connection between VXC pigment de-epoxidation level and light energy thermal dissipation in boreal conifer leaves. Such association reflects the non-species-specific character of the mechanism for quenching zeaxanthin-dependent nonphotochemical chlorophyll fluorescence in PSII LHC in winter and spring.  相似文献   

12.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

13.
Natural senescence of Cucurbita pepo (zucchini) cotyledons was accompanied by a gradual degradation of reserve proteins (globulins) and an intensive decrease in the content of both large subunit (LSU) and small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The net photosynthetic rate, the primary photochemical activity of PSII, estimated by the variable fluorescence (Fv)/maximal fluorescence (Fm) ratio (Fv/Fm) and the actual quantum yield of PSII electron transport in the light-adapted state (ΦPSII) also progressively decreased during natural senescence. In contrast, the fraction of the absorbed light energy, which is not used for photochemistry (LNU) increased with progression of senescence. The decline in the photosynthetic rate started earlier in ontogenesis compared with the down-regulation of the functional activity of PSII, thus suggesting the existence of protective mechanisms which maintain higher efficiency of the photochemical electron transport reactions of photosynthesis compared with the dark reactions of the Calvin cycle during earlier stages of natural senescence. Decapitation of the epicotyl above the senescing cotyledons resulted in full recovery of the polypeptide profile in the rejuvenated cotyledons. In addition, the photosynthetic rate increased reaching values that exceeded those measured in juvenile cotyledons. The photochemical efficiency of PSII also gradually recovered, although it did not reach the maximum values measured in the presenescent cotyledons.  相似文献   

14.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

15.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

16.
Kurasová  I.  Kalina  J.  Urban  O.  Štroch  M.  Špunda  V. 《Photosynthetica》2003,41(4):513-523
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 mol m–2 s–1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 mol m–2 s–1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness.  相似文献   

17.
In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C(3) plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, F(v)/F(m) decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced F(v)/F(m) in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by 'closed' PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of safe and effective herbicides.  相似文献   

18.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

19.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

20.
Spraying low concentrated (0.5–5.0 mM) solutions of NaHSO3 on Satsuma mandarin (Citrus unshiu Marc.) leaves resulted in enhancement (maximal about 15 % at 1 mM NaHSO3) of net photosynthetic rate (P N) for 6 d. The potential photochemical efficiency of photosystem 2 (PS2, Fv/Fm) and the quantum yield of PS2 electron transport (ΦPS2) were increased under strong photon flux density (PFD). The slow phase of millisecond delayed light emission (ms-DLE) was increased, showing that the transmembrane proton motive force related to photophosphorylation was enhanced. We also observed that low concentrations of NaHSO3 promoted the production of ATP in irradiated leaves. We suggest that the increase in P N in Satsuma mandarin leaves caused by low concentrations of NaHSO3 solution may have been due to the stimulation of photophosphorylation and, hence, the increase in photochemical efficiency through speeding-up of PS2 electron transport. Photoinhibition of photosynthesis in leaves was modified by NaHSO3 treatment under high PFD. Hence the increase in leaf dry mass seems to be associated with the mitigation of photoinhibition caused by strong PFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号