首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mutualisms are exploited by parasites, which must strike an evolutionary balance between virulence and long‐term persistence. Fig‐associated nematodes, living inside figs and dispersed by fig wasps, are thought to be exploiters of the fig–fig wasp mutualism. The life history of nematodes is synchronized with the fig development and adapted to particular developmental characteristics of figs. We expect host breeding systems (monoecious vs. gynodioecious figs) and seasonality to be central to this adaptation. However, the details of the adaptation are largely unknown. Here, we conducted the first field surveys on the prevalence of nematodes from monoecious Ficus microcarpa L.f. (Moraceae), gynodioecious Ficus hispida L.f., and their pollinating fig wasps in two seasons and two developmental stages of figs in Xishuangbanna, China. We followed this up by quantifying the effects of nematodes on fitness‐related traits on fig wasps (e.g., egg loads, pollen grains, and longevity) and fig trees (seed production) in gynodioecious F. hispida. The magnitude of nematode infection was compared between pre‐ and post‐dispersal pollinators to quantify the probability of nematodes being transported to new hosts. Our results showed that Ficophagus microcarpus (Nematoda: Aphelenchoididae) was the only nematode in F. microcarpa. In F. hispida, Martininema guangzhouensis (Nematoda: Aphelenchoididae) was the dominant nematode species, whereas Ficophagus centerae was rare. For both species of Ficus, rainy season and inter‐floral figs had higher rates of nematode infection than the dry‐hot season and receptive figs. Nematodes did not affect the number of pollen grains or egg loads of female wasps. We did not detect a correlation between seed production and nematode infection. However, carrying nematodes reduced the lifespan and dispersal ability of pollinator wasps, indicating higher rates of post‐emergence mortality in infected fig wasps. Severely infected fig wasps were likely ‘filtered out’, preventing the overexploitation of figs by wasps and stabilizing the interaction over evolutionary time.  相似文献   

2.
Sexual specialization in two tropical dioecious figs   总被引:3,自引:0,他引:3  
Aviva Patel  Doyle McKey 《Oecologia》1998,115(3):391-400
Ficus species (figs) and their species-specific pollinator wasps are involved in an intimate mutualism in which wasps lay eggs in some ovaries of the closed inflorescences (syconia), and mature, inseminated offspring carry pollen from mature syconia to fertilize receptive inflorescences. In monoecious species, each syconium produces seeds and wasps. In functionally dioecious fig species, making up approximately half the figs worldwide, male and female functions are separated; hermaphrodite (functionally male) trees produce wasps and pollen only, while female trees produce seeds only. This sexual separation allows selection to act independently on the reproductive biology of each sex. Examining sexual specialization in a tight mutualism allows us to determine aspects of the mutualism that are flexible and those that are canalized. In this study, we quantified the phenology of two species of dioecious figs, F. exasperata and F. hispida, for 2 years by following the fates of several thousand syconia over time. In studying each of these species in a dry and a wet site in south India, we tested specific predictions of how dioecious figs might optimize sexual function. On female trees of both species, more inflorescences matured during the wet (monsoon) season than in any other season; this fruiting period enabled seeds to be produced during the season most suitable for germination. In F. exasperata, functionally male trees released most wasps from mature syconia in the dry season, during peak production of receptive female syconia, and thus maximized successful pollination. In F. hispida, “male” trees produced more syconia in the dry and monsoon seasons than in the post-monsoon season. In both species, male and female trees abscised more unpollinated, young inflorescences than pollinated inflorescences, but abscission appeared to be more likely due to resource- rather than pollinator- limitation. The phenology of F. exasperata requires that male inflorescences wait in receptive phase for scarce pollinators to arrive. As expected, male inflorescences of this species had a longer receptive phase than female inflorescences. In F. hispida, where pollinators are rarely scarce, duration of receptive phase was the same for both sexes. Duration of developing phase was longer in female syconia of both species than in male syconia, most likely because they need a longer period of investment in a fleshy fruit. Variation in developing phase of female syconia in one species (F. exasperata) was also greater than that in male syconia, and enabled female trees to sample a variety of germination environments in time. The strong sexual differences in both fig species support the hypothesis that selection for sexual specialization has strongly influenced the reproductive biology of these species. Received: 28 May 1997 / Accepted: 2 February 1998  相似文献   

3.
为了探讨榕树隐头果的发育期、性别、大小等外部特征对传粉榕小蜂选择的影响,采取人为控制雌花期的方法,对鸡嗉子榕(Ficus sermicordata)及其传粉榕小蜂(Ceratosolen gravelyi)的选择行为进行研究。结果表明,在隐头花序发育到雌花期后,如果阻止传粉小蜂进入,隐头果会继续生长。直径较小的雌果和雄果的进蜂量较多,且在雌雄果同时存在时,小蜂仍然会选择进入雌果,但进蜂量显著低于雄果。小蜂优先选择进入雌花期前期的隐头花序,雌雄果皆有此特点。对于相同发育期的隐头果,果径和进蜂量呈正相关关系,说明对于相同发育期的隐头果,小蜂更倾向于进入较大的隐头果。因此,真正控制小蜂行为的是隐头花序所处的发育期,以及不同发育期所产生的化学挥发物,而非隐头果直径大小。这为进一步研究榕-蜂系统的稳定机制提供依据。  相似文献   

4.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

5.
The fig–fig pollinator association is a classic case of an obligate mutualism. Fig‐pollinating wasps often have to fly long distances from their natal syconia to a receptive syconium and then must enter the narrow ostiole of the syconium to reproduce. Large wasps are expected to have a greater chance of reaching a receptive syconium. In this study, we tested this hypothesis and then examined whether the ostiole selectively prevented larger pollinators from entering the syconial cavity. In Xishuangbanna, China, Ceratosolen solmsi marchali Mayr (Hymenoptera: Agaonidae) pollinates the dioecious syconia of Ficus hispida L. (Moraceae). The body size of newly emerged wasps and wasps arriving at receptive syconia were compared. Wasps arriving at receptive syconia were significantly larger than newly emerged wasps. We also compared the size of wasps trapped in the ostiole with those in the cavity. Wasps trapped in the ostiole were significantly larger than those in the syconial cavity. Thus, in the case of F. hispida, large wasps were more likely to reach receptive syconia, but the ostiole limited maximum fig wasp size. This indicates that the ostiole, as a selective filter to pollinators, stabilizes pollinator size. Hence, it helps to maintain stability in the fig–fig pollinator mutualism.  相似文献   

6.
Host–parasites interaction is a common phenomenon in nature. Diffusive coevolution might maintain stable cooperation in a fig–fig wasps system, in which the exploiter might diversify their genotype, phenotype, or behavior as a result of competition with pollinator, whereas the figs change flower syconia, fruits thickness, and syconia structure. In functionally dioecious Ficus auriculata, male figs and female figs contain two types of florets on separate plant, and share high similarities in outside morphology. Apocryptophagus (Sycophaginae, Chalcidoidea, Hymenoptera) is one of few groups of nonpollinating fig wasps that can reproduce within both male and female figs. On the basis of the morphology and DNA barcoding, evidence from partial sequences of mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 2, we found that there are two nonsibling Apocryptophagus species living on male and female F. auriculata figs, respectively. We estimated that these two species diverged about 19.2 million years ago. Our study suggests that the host shift from Ficus variegate or Ficus prostrata fig species to male figs is a preference way for Apocryptophagus wasps to adapt to the separation of sexual function in diecious figs. Furthermore, to escape the disadvantage or sanction impact of the host, the exploiter Apocryptophagus wasps can preferably adapt to exploiting each sex of the figs, by changing their oviposition, niche shift, and habitat.  相似文献   

7.
The phenology and pollination ecology of three native fig species were studied in southeastern Brazil. Populations displayed continual syconia production, with one species showing intra-tree flowering asynchrony. Pollination of the fig flowers was necessary for the development of the syconia; lack of pollination induced abortion of syconia. All three species follow the general pattern of pollination known for figs, but the behavior of the pollinator wasps, Pegoscapus spp., differed in some aspects from those of other neotropical and paleotropical fig wasps, mainly with respect to pollen loading and unloading during pollination. The longevity of Pegoscapus wasps outside the syconium was about two days.  相似文献   

8.
The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant–insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig–fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig–pollinator wasp mutualism.  相似文献   

9.
Moths boring into Ficus syconia on Iriomote Island, south-western Japan   总被引:1,自引:0,他引:1  
Herbivory in the syconia of six Ficus (Moraceae) species (F. superba, F. varieagata, F. virgata, F. irisana, F. bengutensis and F. septica) was examined in March 2002 on Iriomote Island, south‐western Japan. Larvae of two lepidopteran species, Pachybotys spissalis (Guenée) (Pyralidae: Pyraustinae) and Stathmopoda sp. (Stathmopodidae) were observed to bore into the Ficus syconia. The attack rate by the moths varied from 0 to 38.5% across Ficus trees. The interiors of the syconia were heavily grazed by the moth larvae. Because figs (syconia) can be regarded as galls and seeds, according to sex and developmental stage, the moth larvae could be considered as gall or seed herbivores, and predators of fig wasps. Moth attack in the Ficus syconia could cause the destruction of fig wasp populations, as fig wasps develop in the syconia.  相似文献   

10.
Fig trees ( Ficus spp.) and Agaonine fig‐wasps participate in an obligate mutualism. Fig wasps can only develop within fig inflorescences (syconia) and they are the only organisms capable of pollinating fig flowers. Other non‐pollinating wasps that lay eggs by inserting their ovipositors from the outside can also develop in syconia. These parasitic wasps may be parasitoids of either pollinating or other non‐pollinating wasps, or form galls in fig flowers or other tissues. Depending on this interaction, parasitic wasps may have various effects on the production of pollinating wasps and seeds. Wasps in the genus Idarnes, which parasitize New World figs (subgenus Urostigma), have an effect on wasp production but not on seed production. Heterandrium spp., which have short ovipositors and lay on external flowers, are infrequent and no effect on seed production has been documented. In the Colombian Andes, Idarnes spp. and Heterandrium spp. are the most frequent parasites of the Ficus andicola Pegoscapus sp. mutualism, affecting 62 and 43 percent of syconia, respectively. Controlling for other factors that influence wasp and seed production, such as number of foundresses, syconium size and tree, we found that Idarnes reduced pollinator production by almost half but did not reduce seed production, whereas Heterandrium reduced seed production by 40 percent, and marginally affected pollinator production. Our results provide the first clear documentation of Heterandrium spp. impact on fig seed production. Whether the relative abundance of this genus is a generalized phenomenon in montane forest remains to be determined.  相似文献   

11.
薜荔和爱玉及其传粉昆虫繁殖特性   总被引:16,自引:0,他引:16       下载免费PDF全文
薜荔(Ficus pumila L.var.pumila)隶属桑科榕属,爱玉(F.pumila L.var.awkeotsanmg Corner)为其变种,它们的花是单性的,雌雄异株。雌花序中着生雌花,雄花序中有瘿花和雄花,每个花序中花的数量极多,达4000~6000朵。薜荔榕小蜂是唯一能进入薜荔和爱玉的隐头花序中产卵或传粉的共生昆虫,自然状态下雌花的结实率分别为82%、83.52%;瘿花的成虫瘿率分别为58.71%、51.32%,因此可形成大量的果实和虫瘿。物候观察表明薜荔和爱玉花期不遇,它们花序中的榕小蜂种群已经生殖隔离。人为的放蜂实验表明,生活于爱玉花序中的榕小蜂,已无法在薜荔花序中繁殖,生殖隔离进一步得到证实;实验同时表明爱玉的花粉亦不能使薜荔雌花结实,宿主两变种间生理上已不亲和。本文从共生双方协同进化的角度出发,探讨了榕树2变种间与传粉昆虫繁殖特性的差异,以及变种产生的主要原因。  相似文献   

12.
The obligate pollinators of figs (Ficus, Moraceae), species-specific agaonid wasps, benefit figs only by transporting pollen between trees; larvae are seed predators. But given the high risk of mortality in flight between trees, adult wasps should prefer to pollinate and oviposit within inflorescences (syconia) at the same tree at which they developed. Flowering within individuals is tightly synchronous in most species, while different trees flower out of phase with each other, suggesting that fig phenology has evolved to assure outcrossing. However, some fig species show distinct within-tree flowering asynchrony. It has been suggested that such asynchrony is an adaptation by which figs in seasonal environments can reduce pollinator mortality, by permitting wasps to persist on individual trees at times when flight would be impossible. We have evaluated and rejected the validity of this Seasonality Hypothesis for the Florida strangling fig, Ficus aurea, near its northern range limit. Crops of individual trees were most, not least, synchronous during the coldest, driest months of 2 years. Maximum asynchrony occurred in seasons that were probably most favorable for wasp transit between trees. However, temporal overlap of the phenological stages that permit wasps to remain on their natal trees was always very rare, implying that consecutive cohorts of developing syconia may be spaced in time to limit this occurrence. We suggest alternative costs and benefits for these phenological traits, as well as the proximate mechanisms that might produce them.  相似文献   

13.
Fig trees are pollinated by wasp mutualists, whose larvae consume some of the plant's ovaries. Many fig species (350+) are gynodioecious, whereby pollinators generally develop in the figs of ‘male’ trees and seeds generally in the ‘females.’ Pollinators usually cannot reproduce in ‘female’ figs at all because their ovipositors cannot penetrate the long flower styles to gall the ovaries. Many non-pollinating fig wasp (NPFW) species also only reproduce in figs. These wasps can be either phytophagous gallers or parasites of other wasps. The lack of pollinators in female figs may thus constrain or benefit different NPFWs through host absence or relaxed competition. To determine the rates of wasp occurrence and abundance we surveyed 11 dioecious fig species on Hainan Island, China, and performed subsequent experiments with Ficus tinctoria subsp. gibbosa to identify the trophic relationships between NPFWs that enable development in female syconia. We found NPFWs naturally occurring in the females of Ficus auriculata, Ficus hainanensis and F. tinctoria subsp. gibbosa. Because pollinators occurred only in male syconia, when NPFWs also occurred in female syconia, overall there were more wasps in male than in female figs. Species occurrence concurred with experimental data, which showed that at least one phytophagous galler NPFW is essential to enable multiple wasp species to coexist within a female fig. Individuals of galler NPFW species present in both male and female figs of the same fig species were more abundant in females than in males, consistent with relaxed competition due to the absence of pollinator. However, these wasps replaced pollinators on a fewer than one-to-one basis, inferring that other unknown mechanisms prevent the widespread exploitation by wasps of female figs. Because some NPFW species may use the holes chewed by pollinator males to escape from their natal fig, we suggest that dispersal factors could be involved.  相似文献   

14.
Figs (Moraceae) and their pollinating wasps (Agaonidae) constitute a famous reciprocal mutualism in which figs provide some female flowers for the development of fig wasp offspring while the fig wasps pollinate fig flowers. However, figs also host many non-pollinating wasps which are either parasitoids or resource competitors of pollinators, and bring no benefit for figs and are detrimental to fig’ fitness. Our data onFicus racemosa in Xishuangbanna showed that the numbers of non-pollinators and the mature syconia without pollinator wasps increase in rainy season, especially in the highly fragmented forest. This might be because of the longer developing time of the syconia and thereby longer oviposition time to non-pollinators in the dry season. The galled flower and the viable seed percentages in dry seasons are also larger than in rainy seasons in both primary forest and fragmented forest, and the development of non-pollinators is mainly at the expense of pollinator wasps. Our results showed that there exists a discriminative seasonal impact of non-pollinators and fragmentation effects on population size of fig’s pollinators. This implies that fig/fig wasp mutualism is more fragile in dry season, and that the critical population size and breeding units of figs in seasonal area might be larger than previously estimated without considering the seasonal change of pollinator population.  相似文献   

15.
Lifetime reproductive success in female insects is often egg‐ or time‐limited. For instance in pro‐ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro‐ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non‐pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.  相似文献   

16.
The mutualism between fig plants and fig wasps has been recognized as one of the most specialized systems of symbiosis. Figs are pollinated by their highly specific pollinating fig wasps, and the pollinating fig wasps are raised within the syconia of figs. Recent studies indicated a difference between monoecious and dioecious figs in the dispersal range of pollinating wasps, which has potential consequences for gene flow. In this study, we detected the gene-flow pattern of the dioecious climbing fig, Ficus pumila L. var. pumila, at both local and regional scales. At the local scale, spatial autocorrelation analysis indicated strong genetic structure at short distances, a pattern of limited gene flow. This result was also supported by a high inbreeding coefficient (F IS = 0.287) and significant substructuring (F ST = 0.060; P < 0.001). Further analysis indicated that the effective gene dispersal range was 1,211 m, and the relative contribution of seed dispersal was smaller than that of pollen dispersal. The inferred effective range of pollen dispersal ranged from 989 to 1,712 m, while the effective seed dispersal range was less than 989 m. Lack of long-distance dispersal agents may explain the limited seed dispersal. The high density of receptive fig trees was the most likely explanation for limited pollen dispersal, and the position of syconia and relatively low wind speed beneath the canopy may contribute to this phenomenon. At the regional scale, significant negative correlations (kinship coefficient F ij ranging from −0.038 to −0.071) existed in all comparisons between the studied population and other populations, and the assignment test grouped almost all individuals of the studied population into a distinct cluster. Asynchronous flowering on the regional scale, which provides a barrier for the pollinating wasps to fly from the studied population to the other populations, is probably responsible for the limited gene flow on the regional scale.  相似文献   

17.
Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium – a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls, male wasps have the additional burden of detecting conspecific females that are “hidden” behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons.In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment.  相似文献   

18.
Host sanctions that reduce the relative fitness of uncooperative symbionts provide a mechanism that can limit cheating and thus stabilise mutualisms over evolutionary timescales. Sanctions have been demonstrated empirically in several mutualisms. However, if multiple individual symbionts interact with each host, the precision with which individual cheating symbionts are targeted by host sanctions is critical to their short‐ and long‐term effectiveness. No previous empirical study has directly addressed this issue. Here, we report the precision of host sanctions in the mutualism between fig trees and their pollinating wasps. Using field experiments and molecular parentage analyses, we show that sanctions in Ficus nymphaeifolia act at the level of entire figs (syconia), not at the level of the individual flowers within. Such fig‐level sanctions allow uncooperative wasps, which do not bring pollen, to avoid sanctions in figs to which other wasps bring pollen. We discuss the relevance of sanction precision to other mutualisms.  相似文献   

19.
Fig wasps (Chalcidoidea, Agaonidae, Agaoninae) are the exclusive pollinators of fig trees (Ficus spp., Moraceae). Fig development on the African fig tree, F. burtt-davyi, is normally synchronised on individual trees, but not between trees. Consequently the females of each generation of the pollinating species (Elisabethiella baijnathi) have to disperse to other trees to find ‘receptive’ figs which are suitable for oviposition. This paper examines this aspect of fig - fig wasp biology. The flight speed of insects is closely linked to their size, and directional flight is difficult for small insects, such as fig wasps, in all but the lightest of winds. We investigated the movements of fig wasps between trees using sticky traps placed around fig trees or near cotton bags containing figs. Away from the trees, the densities of flying wasps at different heights was also determined. When the wasps disperse from their natal figs they take off near-vertically. They are unable to exert directional control once they enter the air column and are subsequently blown downwind. Near receptive host trees the wasps appear to lose height and then fly upwind at speeds of around 25 cm/sec.  相似文献   

20.
Mutualistic interactions are embedded in networks of interactions that affect the benefits accruing to the mutualistic partners. Figs and their pollinating wasps are engaged in an obligate mutualism in which the fig is dependent on the fig pollinator for pollination services and the pollinator is dependent on fig ovules for brood sites. This mutualism is exploited by non-pollinating fig wasps that utilise the same ovules, but do not provide a pollination service. Most non-pollinating wasps oviposit from outside the inflorescence (syconium), where they are vulnerable to ant predation. Ficus schwarzii is exposed to high densities of non-pollinating wasps, but Philidris sp. ants patrolling the syconia prevent them from ovipositing. Philidris rarely catch wasps, but the fig encourages the patrolling by providing a reward through extra-floral nectaries on the surface of syconia. Moreover, the reward is apparently only produced during the phase when parasitoids are ovipositing. An ant-exclusion experiment demonstrated that, in the absence of ants, syconia were heavily attacked and many aborted as a consequence. Philidris was normally rare on the figs during the receptive phase or at the time of day when wasp offspring are emerging, so predation on pollinators was limited. However, Myrmicaria sp. ants, which only occurred on three trees, preyed substantially on pollinating as well as non-pollinating wasps. F. schwarzii occurs in small clusters of trees and has an exceptionally rapid crop turnover. These factors appear to promote high densities of non-pollinating wasps and, as a consequence, may have led to both a high incidence of ants on trees and increased selective pressure on fig traits that increase the payoffs of the fig–ant interaction for the fig. The fig receives no direct benefit from the reward it provides, but protects pollinating wasps that will disperse its pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号