首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The RNA recognition motif (RRM) is one of the most common eukaryotic protein motifs. RRM sequences form a conserved globular structure known as the RNA-binding domain (RBD) or the ribonucleoprotein domain. Many proteins that contain RRM sequences bind RNA in a sequence-specific manner. To investigate the basis for the RNA-binding specificity of RRMs, we subjected 330 aligned RRM sequences to covariance analysis. The analysis revealed a single network of covariant amino acid pairs comprising the buried core of the RBD and a surface patch. Structural studies have implicated a subset of these residues in RNA binding. The covariance linkages identify a larger set of amino acid residues, including some not directly in contact with bound RNA, that may influence RNA-binding specificity.  相似文献   

3.
The mouse Pax-3 gene encodes a protein that is a member of the Pax family of DNA binding proteins. Pax-3 contains two DNA binding domains: a paired domain (PD) and a paired type homeodomain (HD). Both domains are separated by 53 amino acids and interact synergistically with a sequence harboring an ATTA motif (binding to the HD) and a GTTCC site (binding to the PD) separated by 5 base pairs. Here we show that the interaction of Pax-3 with these two binding sites is independent of their angular orientation. In addition, the protein spacer region between the HD and the PD can be shortened without changing the spatial flexibility of the two DNA binding domains which interact with DNA. Furthermore, by using circular permutation analysis we determined that binding of Pax-3 to a DNA fragment containing a specific binding site causes conformational changes in the DNA, as indicated by the different mobilities of the Pax-3-DNA complexes. The ability to change the conformation of the DNA was found to be an intrinsic property of the Pax-3 PD and of all Pax proteins that we tested so far. These in vitro studies suggest that interaction of Pax proteins with their specific sequences in vivo may result in an altered DNA conformation.  相似文献   

4.
Choulier L  Lafont V  Hugo N  Altschuh D 《Proteins》2000,41(4):475-484
A nonrestrictive method for identifying covariance in protein families is described and applied to human and mouse germline Vkappa and VH sequence alignments. Amino acids that occur at each position in a sequence alignment are divided into two sets, called a word, by generating all possible combinations of alternative amino acids. Each word is associated with a pattern of changes. Words with identical patterns identify covariant positions. In antibody variable domains, the number of words generated ranged between 1103 and 2195 depending on the alignment, of which 4 to 12 % occurred in covariant pairs. Despite the nonrestrictive character of pattern generation, covariant residues did not reflect a random selection with respect to the nature of amino acid changes and/or their spatial proximity in a reference crystallographic structure. This approach allowed the identification of a covariance signal for positions with high variability, mostly located in the outer part of the common structural framework of antibody variable domains. Covariance in these regions may reflect the existence of alternative and mutually exclusive atomic arrangements that are compatible with antibody function. The method may be of general applicability to rationalize residue variability in protein families.  相似文献   

5.
6.
7.
Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (Prd). This protein does not recognize sequences bound by the homeodomain proteins Fushi tarazu (Ftz) or Bicoid (Bcd). We show that changing a single amino acid at the C-terminus of the recognition helix is both necessary and sufficient to confer the DNA binding specificity of either Ftz or Bcd on Prd. This simple rule indicates that the amino acids that determine the specificity of homeodomains are different from those mediating protein-DNA contacts in prokaryotic proteins. We further show that Prd contains two DNA binding activities. The Prd homeodomain is responsible for one of them while the other is not dependent on the recognition helix.  相似文献   

8.
9.
Briata P  Ilengo C  Bobola N  Corte G 《FEBS letters》1999,445(1):160-164
OTX2, a homeodomain protein essential in mouse for the development of structures anterior to rhombomere 3, binds with high affinity to a DNA element (called OTS) present in the human tenascin-C promoter. Here we investigate the binding properties of the full length recombinant human OTX2 and of several deletion mutants to the OTS element. We demonstrate that, upon binding of the protein to its DNA target site, a second molecule of OTX2 is recruited to the complex and that a nearby second binding site is not necessary for this interaction. OTX2 sequences located within a region carboxyl-terminal to the homeodomain are necessary in addition to the homeodomain for binding to DNA. Furthermore, OTX2 dimerization requires the same protein domains necessary for DNA binding.  相似文献   

10.
11.
12.
13.
14.
15.
Recently an HMG-box protein denoted SSRP1, for structure-specific recognition protein 1, has been discovered which binds to specific DNA structural elements such as the bent, unwound conformations that occur upon the formation of intrastrand crosslinks by the anticancer drug cisplatin. The SSRP family includes the mouse protein T160, which recognizes recombination signal sequences. In order to delineate functional domains more clearly, a homolog of SSRP1 was cloned from Drosophila melanogaster. This homolog maps to polytene region 60A (1-4) and shares 54% identity with human SSRP1. Comparison of the predicted amino acid sequences among SSRP family members reveals 48% identity, with structural conservation in the carboxy terminus of the HMG box as well as domains of highly charged residues. Interestingly, however, the most highly conserved regions of the protein are in the less well understood amino terminus, strongly suggesting that this portion of the protein is critical for its function.  相似文献   

16.
PAX6 is required for proper development of the eye, central nervous system, and nose. PAX6 has two DNA binding domains, a glycine-rich region that links the two DNA binding domains, and a transactivation domain. There is evidence that the different DNA binding domains of PAX6 have different target genes. However, it is not clear if the two DNA binding domains function independently. We have studied the effect of structural changes in the paired domain on the function of PAX6 mediated through its homeodomain. The R26G and I87R mutations have been reported in different human patients with clinically different phenotypes and are in the N- and the C-terminal halves of the paired domain, respectively. Surprisingly, we found that the I87R mutant protein not only lost the transactivation function but also failed to bind DNA by either of its DNA binding domains. In contrast, the R26G mutant protein lost DNA binding through its paired domain but had greater DNA binding and transactivation than wild-type PAX6 on homeodomain binding sites. Like R26G, the 5a isoform showed higher DNA binding than wild-type PAX6. This study demonstrates that the two subdomains of the paired domain influence the function of the homeodomain differentially and also provides an explanation for the difference in phenotypes associated with these mutations.  相似文献   

17.
18.
A long L1 repetitive sequence (3.6 kilobase pairs) was found in the third intron of the human thymidylate synthase gene. This L1 family sequence is unique in that it possesses the longest open reading frame (1.7 kilobase pairs) of all L1 family members identified in sequences associated with specific genes that have been cloned thus far. Furthermore, the amino acid sequence deduced from the open reading frame of the L1 sequence was found to be highly homologous (90%) to that encoded by a known human teratocarcinoma L1 RNA species, and to contain several blocks of sequences homologous to ones in RNA-dependent DNA polymerases of various origins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号