首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R) availability in the brain. Such a decrease consequently alters the ratio of D1R∶D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified.

Methods and Findings

Ethics statement: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT) and G protein coupled receptor associated sorting protein-1 (GASP-1) knock out (KO) mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine.

Conclusions

Together, our data suggests that changes in the ratio of the D1R∶D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.  相似文献   

3.
In Drosophila melanogaster, mutations in the gene drop-dead (drd) result in early adult lethality, with flies dying within 2 weeks of eclosion. Additional phenotypes include neurodegeneration, tracheal defects, starvation, reduced body mass, and female sterility. The cause of early lethality and the function of the drd protein remain unknown. In the current study, the temporal profiles of drd expression required for adult survival and body mass regulation were investigated. Knockdown of drd expression by UAS-RNAi transgenes and rescue of drd expression on a drd mutant background by a UAS-drd transgene were controlled with the Heat Shock Protein 70 (Hsp70)-Gal4 driver. Flies were heat-shocked at different stages of their lifecycle, and the survival and body mass of the resulting adult flies were assayed. Surprisingly, the adult lethal phenotype did not depend upon drd expression in the adult. Rather, expression of drd during the second half of metamorphosis was both necessary and sufficient to prevent rapid adult mortality. In contrast, the attainment of normal adult body mass required a different temporal pattern of drd expression. In this case, manipulation of drd expression solely during larval development or metamorphosis had no effect on body mass, while knockdown or rescue of drd expression during all of pre-adult (embryonic, larval, and pupal) development did significantly alter body mass. Together, these results indicate that the adult-lethal gene drd is required only during development. Furthermore, the mutant phenotypes of body mass and lifespan are separable phenotypes arising from an absence of drd expression at different developmental stages.  相似文献   

4.
Human MRI studies have demonstrated that treatment with typical antipsychotics may increase the volume of the caudate nucleus while clozapine treatment is associated with either no change or a reversal of the previous volume increase. In this study four groups of seven rats were treated for 8 months with either the typical antipsychotic haloperidol, the atypical antipsychotic clozapine, the D2/D3 receptor antagonist raclopride, or vehicle (plain drinking water). Striatal sections were prepared using D1-like and D2-like receptor ligand autoradiography. Images (4-6 sections per rat, per ligand) were digitized and the area of the striatum was measured on each section. Rats treated with haloperidol did not have a larger mean striatum area than the control group on either D1- or D2-like ligand autoradiograms. Using the D2-like ligand autoradiograms, the clozapine treated animals had a smaller mean striatum area than the control group. Mean left striatum area was larger than mean right striatum area in each treatment group and in the control group. In contrast to the MRI findings reported in schizophrenia, the area of the striatum was not increased in rats treated with typical antipsychotic agents, but the clozapine-associated area reduction may parallel the clinical studies.  相似文献   

5.
Interaction between clozapine and a lipophilic alpha 1-adrenergic agonist   总被引:1,自引:0,他引:1  
M K Menon  L I Gordon  J Fitten 《Life sciences》1988,43(22):1791-1804
Acute intraperitoneal injection of clozapine produced marked hypothermia and ataxia in Swiss-Webster mice. These two effects were almost completely blocked by the lipophilic alpha 1-adrenergic agonist, St 587, but not by the peripherally-acting alpha 1 agonist methoxamine. It was inferred that these effects of clozapine are central in origin and probably resulted from alpha 1 adrenergic blockade. However, since prazosin, a selective alpha 1-adrenergic antagonist did not elicit either hypothermia or ataxia in mice it became clear that the alpha 1 adrenergic blocking effect of clozapine is not entirely responsible for these effects, but has a major contributory role in their production. Both clozapine and prazosin inhibited the d-amphetamine-induced locomotor stimulation in mice. St 587 did not significantly reduce this amphetamine-blocking effect of clozapine. It was inferred that this response to d-amphetamine involving the release of mesolimbic dopamine is distinct from the other two St 587-sensitive responses. The hypothermic and ataxic effects of clozapine developed complete tolerance after just four days of treatment, but ten days of such treatment was required for the development of tolerance to the amphetamine-blocking effect of clozapine. The possible relationships between St 587-sensitive and insensitive effects of clozapine and its antipsychotic property are discussed.  相似文献   

6.
It has been reported that antipsychotic dopamine-D2-receptor (D2R) antagonists affected other neurotransmitter systems. In the present study, the effects of a D2R agonist, bromocriptine, and a D2R antagonist, spiperone, on brain activity were investigated using wild-type mice (WT) with intact D2Rs, and D2R-knockout mice (D2R-KO) lacking D2Rs by functional magnetic resonance imaging. In the WT, flow-weighted signal intensity significantly increased after administration of bromocriptine in the hippocampal formation. In contrast, signal intensity significantly decreased after administration of spiperone in the somatosensory-motor cortices, thalamus, anterior cingulate cortex, caudate-putamen, nucleus accumbens, hippocampal formation, and amygdala. In the D2R-KO, however, no significant changes were observed after administration of either bromocriptine or spiperone. The present results indicated that the D2R-KO lacked sensitivity to D2R agonist and antagonist in agreement with its genetic defects, which confirmed that the changes in brain activity in the WT after administration of either drug were mediated through D2Rs. These results suggest that antipsychotic D2R antagonists affect activity of the same brain regions of human patients through D2Rs, as observed in the present study. These changes in brain activity might be related to therapeutic efficacy as well as side effects of antipsychotic drugs on schizophrenic patients.  相似文献   

7.
The antipsychotic profile of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562) was investigated using the conditioned avoidance test in rats. NRA0562 is a putative "atypical" antipsychotic agent with moderate to high affinities for dopamine D(1), D(2), D(4), 5-hydroxytryptamine(2A) receptors and alpha(1) adrenoceptor. NRA0562 (1 and 3 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response. Likewise other atypical antipsychotics such as risperidone (1 and 3 mg/kg, p.o.) and clozapine (100 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response in rats. In addition, typical antipsychotics, haloperidol (1 and 3 mg/kg, p.o.) potently impaired the conditioned avoidance response.These results suggest that antipsychotic profile of NRA0562 is consistent with profiles of clozapine or risperidone and may be considered an atypical antipsychotic agent.  相似文献   

8.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

9.
NRA0160, 5 - [2- ( 4- ( 3 - fluorobenzylidene) piperidin-1-yl) ethyl] - 4 -(4-fluorophenyl) thiazole-2-carboxamide, has a high affinity for human cloned dopamine D4.2, D4.4 and D4.7 receptors, with Ki values of 0.5, 0.9 and 2.7 nM, respectively. NRA0160 is over 20,000fold more potent at the dopamine D4.2 receptor compared with the human cloned dopamine D2L receptor. NRA0160 has negligible affinity for the human cloned dopamine D3 receptor (Ki=39 nM), rat serotonin (5-HT)2A receptors (Ki=180 nM) and rat alpha1 adrenoceptor (Ki=237 nM). NRA0160 and clozapine antagonized locomotor hyperactivity induced by methamphetamine (MAP) in mice. NRA0160 and clozapine antagonized MAP-induced stereotyped behavior in mice, although their effects did not exceed 50% inhibition, even at the highest dose given. NRA0160 and clozapine significantly induced catalepsy in rats, although their effects did not exceed 50% induction even at the highest dose given. NRA0160 and clozapine significantly reversed the disruption of prepulse inhibition (PPI) in rats produced by apomorphine. NRA0160 and clozapine significantly shortened the phencyclidine (PCP)-induced prolonged swimming latency in rats in a water maze task. These findings suggest that NRA0160 may have unique antipsychotic activities without the liability of motor side effects typical of classical antipsychotics.  相似文献   

10.
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.  相似文献   

11.
Three I-like conjugative plasmids, ColIdrd1, R144drd3, and R64drd11, which are derepressed for functions involved in conjugation, were found to suppress at least partially the phenotype of temperature-sensitive dnaG mutants of Escherichia coli K-12, as judged from the kinetics of deoxyribonucleic acid synthesis at elevated temperature in newly formed and established plasmid-containing strains. In contrast, the corresponding wild-type plasmids and three F-like derepressed conjugative plasmids, F101, R100drd1, and R1drd16, all failed to suppress. Suppression is presumably caused by a different plasmid-determined function from that which promotes survival of ultraviolet-irradiated bacteria, because both the wild-type I-like plasmids and their drd mutants protected irradiated bacteria. One possible interpretation of these results is that the product of a gene carried by certain I-like plasmids can substitute for the bacterial dnaG gene product during ongoing deoxyribonucleic acid replication.  相似文献   

12.
Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.  相似文献   

13.
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.  相似文献   

14.
Differential gene expression in biofilm cells suggests that adding the derepressed conjugative plasmid R1drd19 increases biofilm formation by affecting genes related to envelope stress (rseA and cpxAR), biofilm formation (bssR and cstA), energy production (glpDFK), acid resistance (gadABCEX and hdeABD), and cell motility (csgBEFG, yehCD, yadC, and yfcV); genes encoding outer membrane proteins (ompACF), phage shock proteins (pspABCDE), and cold shock proteins (cspACDEG); and phage-related genes. To investigate the link between the identified genes and biofilm formation upon the addition of R1drd19, 40 isogenic mutants were classified according to their different biofilm formation phenotypes. Cells with class I mutations (those in rseA, bssR, cpxA, and ompA) exhibited no difference from the wild-type strain in biofilm formation and no increase in biofilm formation upon the addition of R1drd19. Cells with class II mutations (those in gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) displayed increased biofilm formation compared to the wild-type strain but decreased biofilm formation upon the addition of R1drd19. Class III mutants showed increased biofilm formation compared to the wild-type strain and increased biofilm formation upon the addition of R1drd19. Cells with class IV mutations displayed increased biofilm formation compared to the wild-type strain but little difference upon the addition of R1drd19, and class V mutants exhibited no difference from the wild-type strain but increased biofilm formation upon the addition of R1drd19. Therefore, proteins encoded by the genes corresponding to the class I mutant phenotype are involved in R1drd19-promoted biofilm formation, primarily through their impact on cell motility. We hypothesize that the pili formed upon the addition of the conjugative plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as well as the other envelope stress response system, RseA-sigma(E), both of which, along with BssR, play a key role in bacterial biofilm formation.  相似文献   

15.
Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions.  相似文献   

16.
Dopamine D(4) receptors (D(4) Rs) are G protein-coupled receptors that play a role in attention and cognition. In the present study, we investigated the dimerization properties of this receptor. Western blot analysis of the human D(4.2)R, D(4.4)R and D(4.7)R revealed the presence of higher molecular weight immunoreactive bands, which might indicate the formation of receptor dimers and multimers. Homo- and heterodimerization of the receptors was confirmed by co-immunoprecipitation and bioluminescence resonance energy transfer studies. Although dimerization of a large number of G protein-coupled receptors has been described, the functional importance often remains to be elucidated. Folding efficiency is rate-limiting for D(4)R biogenesis and quality control in the endoplasmic reticulum plays an important role for D(4)R maturation. Co-immunoprecipitation and immunofluorescence microscopy studies using wild-type and a nonfunctional D(4.4)R folding mutant show that oligomerization occurs in the endoplasmic reticulum and that this plays a role in the biogenesis and cell surface targeting of the D(4)R. The different polymorphic repeat variants of the D(4)R display differential sensitivity to the chaperone effect. In the present study, we show that this is also reflected by bioluminescence resonance energy transfer saturation assays, suggesting that the polymorphic repeat variants have different relative affinities to form homo- and heterodimers. In summary, we conclude that D(4)Rs form oligomers with different affinities and that dimerization plays a role in receptor biogenesis.  相似文献   

17.
S Matsubara  H Y Meltzer 《Life sciences》1989,45(15):1397-1406
The effect of acute treatment with seven atypical antipsychotic drugs and four typical antipsychotic drugs on serotonin2 (5-HT2) receptor binding sites in rat cerebral cortex was studied. Among the atypical antipsychotic drugs examined, clozapine, fluperlapine, RMI-81582 and setoperone decreased the density of 5-HT2 receptors, but ticspirone, amperozide and melperone did not. None of the drugs affected the Kd value. Among the typical antipsychotic drugs, loxapine decreased Bmax and increased the Kd of 5-HT2 receptor binding sites, whereas chlorpromazine and cis-flupenthixol had no effect. Clothiapine, a typical antipsychotic drug of the same chemical class as clozapine, decreased Bmax without increasing Kd. The downregulation of 5-HT2 receptor binding sites following a single injection of clozapine, 20 mg/kg, remained almost unchanged during the first 72 hrs and was still significantly decreased for up to 120 hrs. There was no relationship between the affinity for the downregulation of rat cortical 5-HT2 receptor binding site and 5-HT2 receptor density. Coadministration of the D1 dopamine agonist, SKF-38393, did not affect the clozapine-induced downregulation. It is suggested that rapid and prolonged downregulation of 5-HT2 receptor sites is characteristic of some but not all atypical antipsychotic drugs and is not specific to atypical antipsychotic drugs. Dibenzo-epines (clozapine, loxapine, amoxapine, chlothiapine) consistently downregulate 5-HT2 receptors in frontal cortex after acute treatment.  相似文献   

18.
Many atypical antipsychotic drugs cause weight gain, but the mechanism of this weight gain is unclear. To dissect the role of the dopamine D2 receptor (D2R), an important receptor in the pharmacology of antipsychotic drugs, we analyzed the effect of olanzapine, risperidone, and ziprasidone on changes in body weight and food intake in male wild-type (WT) and D2R knockout (D2R−/−) mice. The oral delivery of atypical antipsychotics, olanzapine (5 and 10 mg/kg), risperidone (0.1 and 1.0 mg/kg) and ziprasidone (10 and 20 mg/kg) in both strains mice for 2 weeks suppressed body weight gain, except for olanzapine treatment in D2R−/− mice. Olanzapine treatment suppressed body weight gain and decreased food intake in WT mice, but also reduced fat body mass and locomotor activity, whereas D2R−/− mice did not show these changes. Ziprasidone and risperidone treatment produced similar responses in WT and D2R−/− mice. These data suggest the involvement of D2R in the effect of olanzapine on metabolic regulation. Further studies are required to explore the implications of D2R activity in antipsychotic-mediated metabolic complications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号