首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isopenicillin N synthetase (IPNS) gene from Streptomyces clavuligerus was isolated from an Escherichia coli plasmid library of S. clavuligerus genomic DNA fragments using a 44-mer mixed oligodeoxynucleotide probe. The nucleotide sequence of a 3-kb region of the cloned fragment from the plasmid, pBL1, was determined and analysis of the sequence showed an open reading frame that could encode a protein of 329 amino acids with an Mr of 36,917. When the S. clavuligerus DNA from pBL1 was introduced into an IPNS-deficient mutant of S. clavuligerus on the Streptomyces vector pIJ941, the recombinant plasmid was able to complement the mutation and restore IPNS activity. The protein coding region of the S. clavuligerus IPNS gene shows about 63% and 62% similarity to the Cephalosporium acremonium and Penicillium chrysogenum IPNS nucleotide sequences, respectively, and the predicted amino acid sequence of the encoded protein showed about 56% similarity to both fungal sequences.  相似文献   

2.
Superimposition of deacetoxycephalosporin C synthase (DAOCS) and isopenicillin N synthase (IPNS) structures revealed that R74, R160, R266 and N304 are strategically located in the catalytic cavity of Streptomyces clavuligerus DAOCS (scDAOCS) and are crucial for orchestrating different substrates. Substitutions at these sites to a hydrophobic leucine residue were expected to stabilize the hydrophobic substrate bound state. Substantial improvements in the biotransformation of penicillin G, ampicillin and amoxicillin to their respective cephalosporin moieties were observed using the N304L mutant scDAOCS. Thus, our results have demonstrated the enhancement of scDAOCS activity via critical computational analysis and site-directed mutagenesis of endogenous ligands.  相似文献   

3.
Isopenicillin N synthase is essential for the catalytic transformation of a linear tripeptide substrate δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N in the biosynthesis of β-lactam antibiotics. The recent Aspergillus nidulans isopenicillin N synthase crystal structure proposed that a conserved arginine, R279, has a role in substrate binding. This study, the first site-directed mutagenesis experiment on arginine in isopenicillin N synthase, was carried out to ascertain the role of the similarly conserved and corresponding arginine residue R281 on catalysis in the fungal Cephalosporium acremonium isopenicillin N synthase. Replacement of the arginine residue with leucine to generate the mutant R281L Cephalosporium isopenicillin N synthase resulted in undetectable activity as shown by enzyme bioassays. It is possible that the mutant's substrate binding capability was eliminated, thus preventing the catalytic reaction. Further investigation into the corresponding arginine residues in isopenicillin N synthase of other species is warranted.  相似文献   

4.
5.
Isopenicillin N synthase (IPNS) is a non-heme ferrous iron-dependent oxygenase that catalyzes the ring closure of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to form isopenicillin N. Spectroscopic studies and the crystal structure of IPNS show that the iron atom in the active species is coordinated to two histidine and one aspartic acid residues, and to ACV, dioxygen and H2O. We previously showed by site-directed mutagenesis that residues His212, Asp214 and His268 in the IPNS of Streptomyces jumonjinensis are essential for activity and correspond to the iron ligands identified by crystallography. To evaluate the importance of the nature of the protein ligands for activity, His214 and His268 were exchanged with asparagine, aspartic acid and glutamine, and Asp214 replaced with glutamic acid, histidine and cysteine, each of which has the potential to bind iron. Only the Asp214Glu mutant retained activity, approximately 1% that of the wild type. To determine the importance of the spatial arrangement of the protein ligands for activity, His212 and His268 were separately exchanged with Asp214; both mutant enzymes were completely defective. These findings establish that IPNS activity depends critically on the presence of two histidine and one carboxylate ligands in a unique spatial arrangement within the active site. Molecular modeling studies of the active site employing the S. jumonjinensis IPNS crystal structure support this view. Measurements of iron binding by the wild type and the Asp214Glu, Asp214His and Asp214Cys-modified proteins suggest that Asp214 may have a role in catalysis as well as in iron coordination.  相似文献   

6.
Isopenicillin N synthase (IPNS) is a key enzyme responsible for the catalytic conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N in the beta-lactam antibiotic biosynthetic pathway. The Aspergillus nidulans IPNS crystal structure implicated amino acid residues tyrosine-189, arginine-279, and serine-281 in the substrate-binding of the valine carboxylate portion of ACV via hydrogen bonds. In previous reports, we provided mutational evidence for the critical involvement of the corresponding arginine-281 and serine-283, which constitute a conserved R-X-S motif, for the catalysis of Cephalosporium acremonium IPNS (cIPNS). In this study, we report the site-directed mutagenesis of the corresponding tyrosine-191 in cIPNS to four amino acids from different amino acid groups, namely, phenylalanine, serine, histidine, and aspartate. The mutants Y191F, Y191H, and Y191R respectively yielded specific activities at levels of 3, 8.6, and 18.8% relative to the wild-type when enzyme bioassays were performed using purified protein fractions. These results were surprising, as previous mutational analyses involving arginine-281 and serine-283 resulted in non-measurable specific activities, thus suggesting that tyrosine-191 is important but not critical for the activity of cIPNS due to its involvement in ACV binding. Hence, it is likely that tyrosine-191 is the least critical of the three residues involved in binding the ACV valine carboxylate moiety.  相似文献   

7.
Isopenicillin N synthase (IPNS) is critical for the catalytic conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine to isopenicillin N in the penicillin and cephalosporin biosynthetic pathway. Two conserved glycine residues in Cephalosporium acremonium IPNS (cIPNS), namely glycine-42 and glycine-256, were identified by multiple sequence alignment and investigated by site-directed mutagenesis to study the effect of the substitution on catalysis. Our study showed that both the mutations from glycine to alanine or to serine reduced the catalytic activity of cIPNS and affected its soluble expression in a heterologous host at 37 degrees C. Soluble expression was restored at a reduced temperature of 25 degrees C, and thus, it is possible that these glycine residues may have a role in maintaining the local protein structure and are critical for the soluble expression of cIPNS.  相似文献   

8.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

9.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

10.
The occurrence, localization, and extraction of isopenicillin N-synthase (IPNS) were investigated in the gram-negative low-level beta-lactam producer Flavobacterium sp. strain SC 12.154, which forms deacetoxycephalosporin and excretes the cephabacin 7-formamidocephalosporin. IPNS was detected with anti-IPNS antibodies raised against the Cephalosporium acremonium enzyme. The flavobacterium enzyme, whose molecular mass (38 kilodaltons) and cofactor requirements resemble those of the fungal and Streptomyces enzymes, is formed at the transition from growth to the stationary phase. It was extracted into the polyethylene glycol phase of a polyethylene glycol-Ficoll-dextran three-phase system and was purified by quaternary aminoethyl ion-exchange chromatography, gel filtration, covalent chromatography on cystamine-Sepharose, and fast-protein liquid chromatography on Mono Q. The enzyme was characterized with respect to sulfhydryl requirement, inhibition by disulfides and metal ions, pH and temperature dependence, and stimulation by polyethylene glycol and low Triton X-100 concentrations, as well as by several amino acids, including alpha-aminoadipic acid and cysteine. The Km for alpha-aminoadipyl-cysteinyl-D-valine was 0.08 mM. An inactive membrane-associated form of IPNS was detected together with a beta-lactamase active on isopenicillin N. The system has been suggested as a model for the study of endogenous functions of beta-lactams in bacteria.  相似文献   

11.
A key step which involves the cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to the bicyclic ring structure of isopenicillin N in the penicillin and cephalosporin biosynthetic pathway, is catalyzed by isopenicillin N synthase (IPNS). In this study, an IPNS gene from Streptomyces lipmanii NRRL 3584 (slIPNS) was cloned via PCR-based homology cloning, sequenced and expressed in Escherichia coli. Soluble slIPNS was overexpressed up to 21% of total soluble protein, and verified to be functionally active when in an IPNS enzymatic assay. Sequence comparison of the slIPNS gene obtained (excluding the consensus primer sequences) with another cloned IPNS from S. lipmanii 16884.3, revealed one three-nucleotide deletion and three closely-spaced single nucleotide deletions. Furthermore, this paper also reports the first instance of the usage of PCR as an alternative and rapid strategy for IPNS cloning using consensus primers.  相似文献   

12.
Evolutionary distances between bacterial and fungal isopenicillin N synthetase (IPNS) genes have been compared to distances between the corresponding 5S rRNA genes. The presence of sequences homologous to the IPNS gene has been examined in DNAs from representative prokaryotic organisms and Ascomycotina. The results of both analyses strongly support two different events of horizontal transfer of the IPNS gene from bacteria to filamentous fungi. This is the first example of such a type of transfer from prokaryotes to eukaryotes.  相似文献   

13.
Abstract Amino acid sequence alignment of the Cephalosporium acremonium isopenicillin N synthase (cIPNS) to similar non-heme Fe2+-containing enzymes from 28 different sources (bacterial, fungal, plant and animals) revealed a homologous region of high sequence conservation containing an invariant histidine residue at position 272 in cIPNS. The importance of this histidine residue in cIPNS was investigated through site-directed mutagenesis by replacing the histidine residue with leucine. The mutated gene was verified by DNA sequence analysis and expressed in Escherichia coli . When analyzed by denaturing gel electrophoresis and immunoblotting, the mutant cIPNS had identical mobility as that of the wild-type enzyme. Enzyme studies on the mutant enzyme showed loss of enzymatic activity indicating that His272 is essential for the catalytic function of cIPNS, possibly as a ligand for iron binding.  相似文献   

14.
When the level of dissolved oxygen was increased to saturation in defined media fermentations of Streptomyces clavuligerus, the total duration of activity of the penicillin ring cyclization enzyme, isopenicillin N synthase (IPNS), was extended by at least 20 h; however, no increase in the stability of the ring expansion enzyme, desacetoxycephalosporin C synthase (DAOCS), was observed. Consequently, the conversion of the excreted intermediate penicillin N to cephamycin C was 15-20% less efficient at this high oxygen concentration. The increased dissolved oxygen level also led to the complete loss of IPNS and DAOCS activities for 4 h during the period of fastest growth, and the rate of specific cephamycin C production fell to zero. A several hundred fold increase in the level of iron in the defined media resulted in a sixfold improvement in the rate of specific cephamycin C production after 60 h fermentation. This increased rate appeared to be due to an elevation in the in vivo activities of a number of the cephamycin biosynthetic enzymes, particularly those catalysing later pathway steps.  相似文献   

15.
Factors affecting the isopenicillin N synthetase reaction.   总被引:3,自引:0,他引:3       下载免费PDF全文
1. Isopenicillin N synthetase (IPNS) from Cephalosporium acremonium, which requires Fe2+ and O2 for activity, was highly purified for studies of factors affecting its conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (LLD-ACV) into isopenicillin N (IPN). EDTA was used to quench the reaction by removal of Fe2+. 2. IPNS was inactivated during the course of the conversion of LLD-ACV into IPN, although it was relatively stable in the absence of LLD-ACV under otherwise similar conditions. In the presence of GSH and ascorbate each IPNS molecule carried out about 200 catalytic events before inactivation, but the turnover number was decreased 5-fold in the absence of ascorbate. 3. After trace metal ions had been removed from IPNS and other components of the reaction mixture by Chelex-100 resin, only about 10 microM-Fe2+ was required for maximum stimulation. Several other transition-metal ions were inhibitors of the enzyme. 4. Both dithiothreitol (DTT) and GSH stimulated IPNS activity, but GSH, unlike DTT, was not rapidly oxidized in the presence of O2 and Fe2+. 5. IPNS was rapidly inhibited by the thiol-blocking reagents N-ethylmaleimide and 2,2'- and 4,4'-dipyridyl disulphide, but not by 5,5'-dithiobis-(2-nitrobenzoic acid) in the same concentration. Inhibition by 2,2'-dipyridyl disulphide could be reversed by DTT.  相似文献   

16.
A T7 promoter-based vector was used to express the isopenicillin N synthase (IPNS) genes of Flavobacterium sp. 12,154 and Streptomyces jumonjinensis in Escherichia coli. Most of the IPNS synthesized at 37 degrees C, and representing some 22% and 51% of the total cell protein respectively, occurred in an insoluble, enzymatically inactive form. Active IPNS was recovered in a rapid and simple two-step procedure in which the insoluble material was first denatured in 5 M urea and then refolded by passing the solubilized IPNS through a G-25 Sephadex sizing column. Further chromatography on DEAE-Sepharose resulted in highly active IPNS preparations. This procedure was found to be well suited for scaling up to produce large amounts of IPNS.  相似文献   

17.
Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene.  相似文献   

18.
Genomic clones containing an Aspergillus nidulans isopenicillin N synthetase (IPNS) gene have been identified by heterologous hybridization with a Cephalosporium acremonium DNA probe. The open reading frame encodes a 331 amino acid polypeptide with extensive homology with the genes of other beta-lactam-producing fungi. The gene product has been overexpressed in Escherichia coli and shown to have activity of IPNS. This represents the first evidence at the molecular level that the biosynthesis of penicillins in A. nidulans occurs by the same pathway as in other beta-lactam-producing microorganisms. Comparison of available nucleotide sequences from IPNS genes suggests a horizontal transmission of the gene between the prokaryotic beta-lactam producers of the genus Streptomyces and the filamentous fungi.  相似文献   

19.
Summary The relationships between growth, cephamycin production and isopenicillin N synthetase (IPNS) activity in cultures of Streptomyces clavuligerus were examined to establish conditions that optimize the yield and specific activity of the enzyme. Unexpectedly for a secondary metabolic pathway component, IPNS was synthesized preferentially during rapid growth and reached its maximum specific activity in cultures supplied with readily assimilated sources of nitrogen. The activity decreased sharply as cultures entered stationary phase. On the other hand, comparisons of growth and antibiotic production on a range of carbon and nitrogen sources as well as measurements of IPNS activity in chemostat cultures implicated catabolite repression, a mechanism usually associated with separation of trophophase and idiophase activities, as an important factor in controlling expression of the secondary metabolic pathway. An explanation for the timing of IPNS biosynthesis is suggested.Dedicated to Professor H. J. Rehm on the occasion of his 60th birthday  相似文献   

20.
The N-2 strain of Acremonium chrysogenum accumulates the beta-lactam precursor tripeptide delta-(L-alpha-amino-adipoyl)-L-cysteinyl-D-valine and has no discernible activity for three of the cephalosporin C (Ce) biosynthetic enzymes. This phenotype is consistent with a mutation either within pcbC [the isopenicillin N synthetase (IPNS)-encoding gene] or in a pathway-regulator gene. To distinguish these possibilities we have cloned and sequenced pcbC from strain N-2. There is a single C----T mutation at nt 854 within the coding sequence, changing aa 285 from proline to leucine. An IPNS-specific monoclonal antibody recognises a catalytically inactive IPNS protein in extracts of N-2 cells. These findings suggest that strain N-2 carries a simple IPNS mutation and that IPNS or its biosynthetic product isopenicillin N is involved in regulation of the later stages of the Ce biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号