首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed the phenomenon of midday depression in the rate of tree root respiration. Diurnal changes in the root respiration rate of Quercus crispula and Chamaecyparis obtusa were measured under intact conditions using a closed chamber method and a soil respiration measurement system (LI-6400 with a root respiration chamber) in a forest in the foothills of Mt. Fuji. After the measurement of intact root respiration in the field, the root was excised and taken to the laboratory, and the temperature dependence on the respiration rate of the detached root was measured using an open-flow gas exchange system with an infrared gas analyzer (LI-6252). The measurement was conducted in September 2003, August and November 2005, and June 2006. Whereas the root respiration rate of both species under intact conditions increased with increasing soil and root temperatures from dawn to early morning, the respiration rate decreased around midday from 10:00 to 15:00 despite an increment of soil and root temperatures. There was no clear relationship between the intact root respiration rate and root temperature in either species, although the detached root respiration rate of both increased exponentially with the temperature. The amount of the CO2 efflux estimated using the temperature dependence of detached root respiration tended to underestimate the actual measurement value (intact respiration rate) by 20–50% in both species. These results indicate that evaluating midday depression in root respiration would be important for a more accurate estimation of the carbon cycle or net ecosystem production in forests.  相似文献   

2.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

3.
Bigtooth maple (Acer grandidentatum) is a promising ornamental tree that is not widely used in managed landscapes. Tissue culture has not been used successfully to propagate this taxon. We cultured single- and double-node explants from greenhouse-grown, 2-y old seedlings of bigtooth maples, which are indigenous to New Mexico, Texas, and Utah, on Murashige–Skoog (MS), Linsmaier–Skoog (LS), Driver–Kuniyuki Walnut (DKW), and Woody Plant (WPM) tissue culture media. Media affected shoot proliferation (P = 0.0242) but the zone of explant origin (P = 0.7594) did not. After four 30-d subcultures, explants on DKW media and WPM media produced 3.6 and 3.5 shoots per explant, respectively. Sprouting rates were highest on DKW, making DKW the best overall media for shoot proliferation. Double-node microshoots were rooted in vitro on DKW containing indole acetic acid (IAA). Microshoots represented six genotypes from three locations within Texas and New Mexico. Rooting percentage increased up to 15% as IAA concentration increased (P = 0.0040). There was 100% survival of rooted microshoots in vented Phytatrays containing one perlite: one peat moss (v/v). We conclude that DKW can be used to proliferate microshoots, and IAA induces rooting in microshoots of bigtooth maple.  相似文献   

4.
Dioecious species accounted for 6% of all plant species, including a number of crops and economically important species, such as poplar. However, sex determination and sex chromosome evolution have been studied only in few dioecious species. In poplar, the sex-determining locus was mapped to chromosome 19. Interestingly, this locus was mapped to either a peritelomeric or a centromeric region among different poplar species. We developed an oligonucleotide (oligo)-based chromosome painting probe based on the sequence of chromosome 19 from Populus trichocarpa. We performed chromosome painting in P. tomentosa and P. deltoides. Surprisingly, the distal end on the short arm of chromosome 19, which corresponds to the location of the sex-determining locus reported in several species, was not painted in both species. Thus, the DNA sequences associated with this region have not been anchored to the current chromosome 19 pseudomolecule, which was confirmed by painting of somatic metaphase chromosome 19 of P. trichocarpa. Interestingly, the unpainted distal ends of the two chromosome 19 did not pair at the pachytene stage in 22–24% of the meiotic cells in the two species, suggest that these regions from the sex chromosomes have structurally diverged from each other, resulting in the reduced pairing frequency. These results shed light on divergence of a pair of young sex chromosomes in poplar.  相似文献   

5.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

6.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

7.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

8.
Summary Shoot apex, nodal, and leaf explants of Stevia rebaudiana Bertoni can regenerate shoots when cultured on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA; 8.87 μM) and indole-3-acetic acid (5.71 μM). Rooting of the in vitro-derived shoots could be achieved following subculture onto auxin-containing medium. A survival rate of 70% was recorded at the hardening phase on the substrate cocopeat. The presence of the sweet diterpene glycosides, viz. stevioside and rebaudioside, was confirmed in the in vitro-derived tissues of Stevia using HPTLC techniques. Callus cultured on agar-solidified MS medium supplemented with BA (8.87 μM) and indole-3-butyric acid (9.80 μM) showed the highest sweetener content.  相似文献   

9.
Two clones of Olea europaea L. were studied for their potential impact on hydraulic architecture and vulnerability to xylem cavitation, when used as rootstocks. The clones used were “Leccino Minerva” (LM), showing vigorous growth and “Leccino Dwarf” (LD) with strongly reduced growth. Self-rooted LM and LD plants as well as their grafting combinations were compared, namely, LM/LD (Leccino Minerva grafted onto Leccino Dwarf rootstock) and LD/LM (Leccino Dwarf grafted onto Leccino Minerva rootstocks). Plants with LD roots (LD and LM/LD) showed significantly reduced leaf surface area compared with plants with LM roots. Xylem conduits of LD shoots were 25% more numerous than in LM shoots. When grafted onto LM rootstocks, however, LD shoots produced consistently wider and longer vessels than measured in LD self-rooted plants. This caused LD/LM plants to increase stem vulnerability to cavitation with threshold pressures for cavitation (P c) of less than 0.5 MPa compared with LD self-rooted plants that had P c of over 2.0 MPa. By contrast, although LD rootstocks caused some reduction of vessel diameter and length of LM scions, their influence on LM hydraulic architecture was too small to reduce vulnerability to cavitation of LM scions with respect to that measured for LM self-rooted plants. Our conclusion is that although dwarfing rootstocks effectively reduce grafted plant size, they do not necessarily confer higher resistance to xylem cavitation to scions which would improve plant resistance to drought.  相似文献   

10.
11.
Transient expression studies using blueberry leaf explants and monitored by -glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 M for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 M AS. Explants were then placed on modified WPM supplemented with 1.0 mg l–1 thidiazuron, 0.5 mg l–1 -naphthaleneacetic, 10 mg l–1 kanamycin (Km), and 250 mg l–1 cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 E m–2 s–1 at 25°C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.  相似文献   

12.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

13.
Summary A method has been developed for the induction of adventitious shoots from leaf tissue of Echinacea pallida with subsequent whole-plant regeneration. Proliferating callus and shoot cultures were derived from leaf tissue explants placed on Murashige and Skoog medium supplemented with 6-benzylaminopurine and naphthaleneacetic acid combinations. The optimum shoot regeneration frequency (63%) and number of shoots per explant (2.3 shoots per explant) was achieved using media supplemented with 26.6 μM 6-benzylaminopurine and 0.11 μM naphthaleneacetic acid. Rooting of regenerated shoot explants was successful on Murashige and Skoog medium, both with and without the addition of indole-3-butyric acid. All plantlets survived acclimatization, producing phenotypically normal plants in the greenhouse. This study demonstrates that leaf tissue of E. pallida is competent for adventitious shoot regeneration and establishes a useful method for the micropropagation of this important medicinal plant.  相似文献   

14.
In the present study, we investigated the effects of pH treatments on NaCl tolerance in mycorrhizal and non-mycorrhizal American elm. American elm (Ulmus americana) seedlings were inoculated with Hebeloma crustuliniforme, Laccaria bicolor or with both mycorrhizal fungi and subsequently subjected to different pH solutions (pH 3, 6 and 9) containing 0 mM (control) and 60 mM NaCl for 4 weeks. Inoculation with the mycorrhizal fungi did not have a large effect on seedling dry weights when the pH and NaCl treatments were considered independently. However, when the inoculated seedlings were treated with 60 mM NaCl at pH 3 or 6, shoot to root ratios and root hydraulic conductivity were higher compared with non-inoculated plants, likely reflecting changes in seedling water flow properties. At pH 6, transpiration rates were about twofold lower in non-inoculated plants treated with NaCl compared with non-treated controls. For NaCl-treated H. crustuliniforme- and L. bicolor-inoculated plants, the greatest reduction of transpiration rates was at pH 9. Treatment with 60 mM NaCl reduced leaf chlorophyll concentrations more in non-inoculated compared with inoculated plants, with the greatest, twofold, decrease occurring at pH 6. At pH 3, root Na concentrations were higher in inoculated than non-inoculated seedlings; however, there was no effect of inoculation on root Na concentrations at pH 6 and 9. Contrary to the roots, the leaves of inoculated plants had lower Na concentrations at pH 6 and 9, but not at pH 3. The results point to an interaction between ECM fungi and root zone pH for salt tolerance of American elm.  相似文献   

15.
16.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora: Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii , Rumex densiflorus var. pycnanthus , R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage.  相似文献   

17.
Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa × B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.  相似文献   

18.
Increase in both atmospheric CO2 concentration [CO2] and associated warming are likely to alter Earths’ carbon balance and photosynthetic carbon fixation of dominant plant species in a given biome. An experiment was conducted in sunlit, controlled environment chambers to determine effects of atmospheric [CO2] and temperature on net photosynthetic rate (P N) and fluorescence (F) in response to internal CO2 concentration (C i) and photosynthetically active radiation (PAR) of the C4 species, big bluestem (Andropogon gerardii Vitman). Ten treatments were comprised of two [CO2] of 360 (ambient, AC) and 720 (elevated, EC) μmol mol−1 and five day/night temperature of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Treatments were imposed from 15 d after sowing (DAS) through 130 DAS. Both F-P N/C i and F-P N/PAR response curves were measured on top most fully expanded leaves between 55 and 75 DAS. Plants grown in EC exhibited significantly higher CO2-saturated net photosynthesis (P sat), phosphoenolpyruvate carboxylase (PEPC) efficiency, and electron transport rate (ETR). At a given [CO2], increase in temperature increased P sat, PEPC efficiency, and ETR. Plants grown at EC did not differ for dark respiration rate (R D), but had significantly higher maximum photosynthesis (P max) than plants grown in AC. Increase in temperature increased Pmax, R D, and ETR, irrespective of the [CO2]. The ability of PEPC, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosystem components, derived from response curves to tolerate higher temperatures (>35 °C), particularly under EC, indicates the ability of C4 species to sustain photosynthetic capacity in future climates.  相似文献   

19.
The interactive effects of inorganic carbon status, temperature and light on chlorosis induced by nitrogen deficiency, and the roles of Clp proteases in this process were investigated. In wild-type cultures grown in high or ambient CO2, following transfer to media lacking combined nitrogen, phycocyanin per cell dropped primarily through dilution of the pigment through cell division, and also suffered variable degrees of net degradation. When grown at high CO2 (5%), chlorophyll (Chl) suffered net degradation to a greater extent than phycocyanin. In marked contrast, growth at ambient CO2 resulted in Chl per cell dropping through dilution. Conditions that drove net Chl degradation in the wild-type resulted in little or no net Chl degradation in a clpPI inactivation mutant, with Chl content dropping largely through growth dilution in the mutant. The chlorotic response of a clpPII inactivation strain was nearly the same as that of wild-type, although phycocyanin degradation may have been slightly accelerated in the former.  相似文献   

20.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号