首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the development in vitro and in vivo of nuclear transfer (NT) embryos reconstructed with embryonic cells (blastomeres) at the 32- to 63-cell (sixth cell cycle) and 64- to 127-cell (seventh cell cycle) stages was investigated to determine the optimum range of embryonic cell cycles for yielding the highest number of identical calves in Japanese black cattle. Rates of development to the blastocyst stage (overall efficiency) were higher in the sixth cell-cycle stage (45%) than in the seventh cell-cycle stage (12%). After the transfer of the blastocysts reconstructed with blastomeres of the sixth and seventh cell cycle-stage embryos to recipient heifers, there were no differences in the pregnancy (14/35: 40% versus 3/13: 23%, respectively) or calving rates (11/39: 28% versus 3/13: 23%, respectively). These results indicate that the highest number of identical calves would be obtained by using sixth cell cycle (32- to 63-cell)-stage embryos as nuclear donors.  相似文献   

2.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

3.
This work was performed within a commercial nuclear transfer program to investigate different methods for synchronizing donor cell cycle stage, for harvesting donor cells, and for fusion and activation of reconstructed caprine embryos. Primary fetal cells isolated from day 35 to day 40 fetuses were co-transfected with DNA fragments encoding both the heavy and light immunoglobulin chains of three different monoclonal antibodies and neomycin resistance. Four neomycin resistant cell lines for each antibody were selected, expanded, and aliquots were both cryopreserved for later use as karyoplast donors or used for further genetic characterization. Transfected fetal cells were cultured in 0.5% FBS to synchronize G0/G1 cell cycle stage cells, then re-fed with 10% FBS prior to use to allow donor cells to re-enter the cell cycle. Alternatively, transfected fetal cells were grown to confluence in 10% FBS to induce contact inhibition to synchronize G0/G1 cell cycle stage cells. Adherent monolayers of transfected fetal donor cells were harvested by either partial or complete trypsinization. Donor cells were simultaneously fused and activated with enulceated in vivo produced ovulated oocytes from superovulated does. Half of the fused couplets received an additional electrical activation pulse and non-fused couplets were re-fused. Four live offspring were produced from 587 embryos generated from cell lines cultured in 0.5% FBS, while one live offspring was produced from 315 embryos generated from cell lines cultured in 10% FBS (0.7% versus 0.3% embryos transferred, respectively, P > 0.05). Five offspring were produced from 633 embryos generated from cell lines harvested by partial trypsinization (0.8% embryos transferred), and no offspring were produced from 269 embryos generated from cell lines harvested by complete trypsinization. Four live offspring were produced from 447 embryos generated from re-fused couplets, and one live offspring was produced from 230 embryos generated from fused couplets that received an additional electrical activation pulse (0.9% versus 0.4% embryos transferred, respectively, P > 0.05). These results suggest that low-serum culture of transfected goat fetal cells and harvest by partial trypsinization may be more efficient methods for generating transgenic goats by somatic cell nuclear transfer. In addition, re-fusion of non-fused couplet or an additional activation step was successful for producing live offspring.  相似文献   

4.
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b…  相似文献   

5.
Data on biopsied, sexed and cryopreserved in vitro produced (IVP) bovine embryos, and their in vivo developmental competence are very limited. Two preliminary studies were conducted before the primary study. In Experiment 1, post-thaw in vitro developmental competence of biopsied and vitrified IVP embryos was evaluated using re-expansion as an endpoint. In Experiment 2, the pregnancy rates of biopsied fresh, frozen or vitrified embryos following single embryo transfer were compared. Since vitrified embryos resulted in a higher pregnancy rate than frozen-thawed embryos, in the primary study (Experiment 3), all IVP embryos were vitrified following biopsy and sexing (by DNA fingerprinting). In Experiment 3, we compared pregnancy initiation and calving results of heifers in the following treatments: 1) artificial insemination (AI); 2) AI plus contralateral transfer of a single embryo (AI + SET); 3) ipsilateral transfer of single embryo (SET); or 4) bilateral transfer of two embryos (DET). Birth weights, gestation lengths and dystocia scores were recorded. In Experiment 1, post-thaw re-expansion rate of biopsied and vitrified embryos was 85% (70/82). In Experiment 2, pregnancy rates (90 d) were 44% (7/16), 23% (3/13), and 50% (7/14) for vitrified, frozen and fresh embryos, respectively (P < 0.10). In Experiment 3, pregnancy rates of AI and SET were 65% (20/31) and 40% (16/40), respectively (P < 0.05). The pregnancy rate of AI + SET was 75% (27/36) with 11 carrying twins, and the pregnancy rate of DET was 72% (26/36) with 10 carrying twins. All AI fetuses were carried to term, but only half the SET fetuses were carried to term. Similar calving rates were observed in the AI + SET and DET groups, 76 and 70%, respectively, of those pregnant at Day 40. Mean birth weight, dystocia score and gestation length of AI calves were not different from those of SET calves. Mean birth weight and dystocia score of single-born calves were greater than those of twin born calves (P < 0.05). These data demonstrate that biopsied IVP bovine embryos can be successfully cryopreserved by vitrification and following post-thaw embryo transfer, acceptable rates of offspring with normal birth weights can be obtained without major calving difficulties.  相似文献   

6.
7.
One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P < 0.05), and from 59 to 88% (P < 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P < 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.  相似文献   

8.
Many different cell types have been used to generate nuclear transfer embryos and fetuses. However, little is known about the potential of fibroblasts derived from a nuclear transfer fetus as donor cells for nuclear transfer. The ability of cloned fetuses or animals to be cloned themselves is of great interest in determining whether successive generations of clones remain normal or accumulate genetic or phenotypic abnormalities. We generated a bovine fibroblast cell line from a cloned fetus, that continued to divide beyond 120 days (94 doublings,18 passages) in continuous culture. As long-term survival of cells in culture is a desirable characteristic for use in transgenic cell production, passage 2 and 18 cells were compared as donor cells for nuclear transfer (NT). When cells from passage 2 (2 weeks in culture) and passage 18 (4 months in culture) were used for nuclear transfer, there was no significant difference in development rate to blastocyst (35.4 versus 44.6%, P=0.07). A greater proportion of late passage cells were in G0/G1 whether under serum-fed (64 versus 56%, P<0.01) or serum-starved (95 versus 88%, P<0.01) culture conditions. Following embryo transfer, equivalent day 30 pregnancy rates were observed for each group (P 2: 2/19 versus P 18: 2/13). A slightly retarded fetus was surgically removed at day 56 and the remaining three fetuses died in utero by day 60 of gestation. Our results show that fibroblast cells derived from regenerated cloned fetuses are capable of both in vitro and in vivo development. The longevity of this regenerated cell line would allow more time for genetic manipulations and then to identify stable transfected cells prior to their use as NT donor cells. Although no live fetuses were produced in this study the results provide encouraging data to show that a cloned fetus can itself be recloned to produce another identical cloned fetus. Further studies on this and other recloned fetuses are necessary to determine whether the failure to produce live offspring was a result of inadequate sample size or due to the cell type selected.  相似文献   

9.
Multiple ovulation embryo transfer (MOET) is used to make more rapid progress in animal breeding schemes. On dairy farms, where female calves are more desired, embryo sex diagnosis is often performed before embryo transfer. Fresh transfers have been favored after biopsy due to cumulative drop in pregnancy rates following cryopreservation. The aim of this study was to explore whether exposure to ascorbic acid (AC) during biopsy and freezing increases the viability of biopsied embryos after cryopreservation. Data on presumptive pregnancy and calving rates of biopsied and cryopreserved/overnight-cultured embryos were gathered. Results showed differences in presumptive pregnancy rates between the groups: 45% for both biopsied-cryopreserved groups (control and AC), 51% for biopsied-overnight-cultured embryos and 80% for intact-fresh embryos. Differences between the groups were also apparent in calving rates: 22% for biopsied-cryopreserved control embryos, 31% for biopsied-cryopreserved AC-embryos, 23% for biopsied-overnight-cultured embryos and 63% for intact-fresh embryos. It is concluded that manipulated embryos are associated with lower presumptive pregnancy and calving rates compared with intact-fresh embryos. The highest calving rates for groups of manipulated embryos were achieved in the AC-group. Therefore, addition of AC can be recommended if biopsy is combined with freezing before transfer.  相似文献   

10.
Block J  Hansen PJ 《Theriogenology》2007,67(9):1518-1529
Culture of bovine embryos in the presence of insulin-like growth factor-1 (IGF-1) can increase pregnancy rates following transfer to heat-stressed, lactating dairy cows. The objective of the present experiment was to determine whether the effect of IGF-1 on post-transfer embryo survival was a general effect or one specific to heat stress. Lactating recipients (n=311) were synchronized for timed-embryo transfer at four locations. Embryos were produced in vitro and cultured with or without 100 ng/mL IGF-1. At Day 7 after anticipated ovulation (Day 0), a single embryo was randomly transferred to each recipient. Pregnancy was diagnosed at Day 21 by elevated plasma progesterone concentrations, at Days 27-32 by ultrasonography, and at Days 41-49 by transrectal palpation. Transfers were categorized into two seasons, hot or cool (based on the month of transfer). There was a tendency (P<0.09) for an interaction between embryo treatment and season for pregnancy rate at Day 21; this interaction was significant at Days 30 and 45 (P<0.02). Recipients receiving IGF-1 treated embryos had higher pregnancy rates in the hot season but not in the cool season. There was a similar interaction between embryo treatment and season for overall calving rate (P<0.05). There was also an interaction between season and treatment affecting pregnancy loss between Days 21 and 30; recipients that received IGF-1 treated embryos had less pregnancy loss during this time period in the hot season but not in the cool season. The overall proportion of male calves born was 77.5%. In conclusion, treatment of embryos with IGF-1 improved pregnancy and calving rates following the transfer of in vitro produced embryos into lactating recipients, but only under heat-stress conditions.  相似文献   

11.
To assess the developmental potential of nuclear transfer embryos in cattle using mammary gland epithelial (MGE) cells derived from the colostrum, we compared the effectiveness of cloning using those cells and fibroblast cells derived from the ear. The fusion rate of the enucleated oocytes with fibroblast cells (75 +/- 4%) was significantly higher than that with MGE cells (56 +/- 7%, P<0.05). There were no significant differences in the cleavage rate (85 +/- 3% vs. 91+/- 2%) or in the developmental rate to the blastocyst stage (35 +/- 6% vs. 35 +/- 5%) using MGE cells vs. fibroblast cells as donor nuclei (P>0.05). After transfer of blastocysts derived from nuclear transfer embryos produced using MGE cells and fibroblast cells, 13% (4/31) and 16% (6/37) of recipient heifers were pregnant on Day 42 as assessed by ultrasonography, respectively. Two of the 4 and 4 of the 6 recipients of embryos with MGE cell- and fibroblast cell-derived nuclei, respectively, aborted within 150 days of pregnancy. Four live female calves were obtained from MGE cells or fibroblast cells. However, one died from internal hemorrhage of the arteria umbilicalis. The other three calves were normal and healthy. There were no differences in the pregnancy rate or calving rate when using MGE cells vs. fibroblast cells. Microsatellite DNA analyses confirmed that the cloned calves were genetically identical to the donor cows and different from the recipient heifers. We conclude that colostrum-derived MGE cells have the developmental potential to term by nuclear transfer, and the efficiency of development of those cloned embryos was the same as that of embryos obtained using fibroblast cells as donor nuclei, although there was a significant difference in the fusion rate. This method using MGE cells derived from colostrum, which is obtained easily and safely from live adult cows, is more advantageous for cloning with somatic cells.  相似文献   

12.
We compared developmental potential of somatic cell nuclear transfer (NT) embryos and postnatal survivability of cloned calves produced by two different fusion and activation protocols. As donor cells for NT, bovine cumulus cell-derived cultured cells of passage 5 were used following culture in serum-starved medium for 5-7 days. Enucleated oocytes were fused with donor cells at 21 or 24 hr post maturation. NT embryos fused at 21 hr were activated chemically 3 hr after fusion (DA group) and embryos fused at 24 hr were activated chemically immediately after fusion (FA group). Chemical activation was accomplished by calcium ionophore for 5 min and cytochalasin D + cycloheximide for 1 hr then cycloheximide alone for 4 hr. After in vitro culture in IVD101 medium for 7 days, embryo transfer was performed. Fusion rates were 86 and 84% in the DA and FA groups, respectively. Developmental rate to the blastocyst stage of NT embryos in the DA group was higher than in the FA group (42% vs. 28%). Pregnancy rate did not differ significantly between the DA and FA groups (11/13 and 5/7 at day 35), and 13 cloned calves (including 1 set of twins from a single embryo transfer) were born. High rates of postnatal mortality were observed in both groups. These results suggest that the DA method improves in vitro developmental potential of NT embryos, but the timing of fusion and chemical activation does not affect the pregnancy rate and the survivability of cloned calves.  相似文献   

13.
Production of cloned pigs from cultured fetal fibroblast cells   总被引:14,自引:0,他引:14  
Somatic cell nuclear transfer was used to produce live piglets from cultured fetal fibroblast cells. This was achieved by exposing donor cell nuclei to oocyte cytoplasm for approximately 3 h before activation by chemical means. Initially, an experiment was performed to optimize a cell fusion system that prevented concurrent activation in the majority of recipient cytoplasts. Cultured fibroblast cells were fused in medium with or without calcium into enucleated oocytes flushed from superovulated gilts. Cybrids fused in the presence of calcium cleaved at a significantly (P < 0.05) greater rate (69%, 37 out of 54) after 2 days of culture compared with those fused without calcium (10%, 7 out of 73), suggesting that calcium-free conditions are needed to avoid activation in the majority of recipient cytoplasts during fusion. In the second experiment, cybrids fused in calcium-free medium were activated approximately 3 h later with ionomycin, followed by incubation in 6-dimethylaminopurine to determine development in vitro. Following 2 days of culture, cleavage rates of chemically activated and unactivated cybrids (fusion without activation control) were 93% (100 out of 108) and 7% (2 out of 27), respectively. After an additional 5 days of culture, activated cloned embryos formed blastocysts at a rate of 23% (25 out of 108) with an average inner cell mass and trophectoderm cell number of 10 (range, 3 to 38) and 31 (range, 16 to 58), respectively. In the third experiment, activated nuclear transfer embryos were transferred to the uteri of synchronized recipients after 3 days of culture to assess their development in vivo. Of 10 recipients receiving an average of 80 cleaved embryos (range, 40 to 107), 5 became pregnant (50%) as determined by ultrasound between Day 25 and Day 35 of gestation. Of the five pregnant recipients, two subsequently farrowed one piglet per litter originating from two different cell culture lines. In this study, efficient reprogramming of porcine donor nuclei by fusing cells in the absence of calcium followed by chemical activation of recipient cytoplasts was reflected in high rates of development to blastocyst and pregnancy initiation leading to full term development.  相似文献   

14.
The aim of this study was to examine the effects of modifications to a standard slow freezing protocol on the viability of in vitro produced bovine embryos. Bovine oocytes were matured, fertilized with frozen-thawed semen, and presumptive zygotes cultured in defined two-step culture media. The standard freezing medium was 1.5M ethylene glycol (EG), 0.1M sucrose, 10% fetal bovine serum (FBS) in Dulbecco's phosphate buffered saline (D-PBS). A preliminary trial showed that in vitro produced embryos cryopreserved in this medium had a survival rate of 74.6% at 24h and 53.5% at 48 h post-thaw. Experiment 1 studied the effects of omitting the sucrose supplement or replacing it with 0.1M xylose. In Experiment 2, the effects of partial (0%, 25% or 50%) or total (100%) replacement of sodium chloride with choline chloride in the cryopreservation medium were examined (the medium with 100% replacement was designated CJ1). The effects of replacing the 10% FBS with 0.4% BSA or 0.4% lipid-rich BSA (Albumax I) in CJ1 was studied in Experiment 3. In Experiment 4, pregnancy/calving rates following the post-thaw transfer of in vitro produced embryos cryopreserved in the standard freezing medium were compared with those of in vitro and in vivo produced embryos cryopreserved in the improved medium (Albumax I in CJ1). Supplementation of the cryopreservation medium with 0.1M sucrose resulted in higher post-thaw survival rates at 24 h (71.3% versus 53.5 and 51.7%; P<0.05), 48 h (51.1% versus 45.3 and 40.2%), and 72 h (34.0% versus 24.4 and 23.0%) than 0.1M xylose or no supplement, respectively, in Experiment 1. Experiment 2 showed that embryos cryopreserved in the standard medium had poorer survival rates at 24 h (72.8% versus 86.5%; P<0.05), 48 h (53.1% versus 66.3%) or 72 h (28.4% versus 44.9%) than those frozen in CJ1. The post-thaw survival rate of embryos frozen in medium supplemented with Albumax I was better than that for the FBS or BSA supplements at 24h (92.0% versus 90.7 and 87.3%), 48 h (87.3% versus 76.9 and 70.9%; P<0.05), and 72 h (70.4% versus 49.1 and 46 4%; P<0.05; Experiment 3). In Experiment 4, in vitro produced embryos cryopreserved in CJ1 medium supplemented with Albumax I resulted in higher pregnancy rates at Day 35 (31.9% versus 22.9%) and Day 60 (24.1% versus 14.3%) of gestation, and calving rates (22.6% versus 10.0%; P<0.05) than similar embryos frozen in the standard medium. However, in vivo produced embryos cryopreserved in Albumax I in CJ1 resulted in higher pregnancy rates at Day 35 (50.7%; P<0.05) and Day 60 (45.1%; P<0.05) of gestation, and calving rate (43.7%; P<0.05). It was concluded that modification of the freezing medium by addition of lipid-rich BSA and replacing sodium chloride with choline chloride improves the post-thaw survival of in vitro produced embryos, and their viability post-transfer.  相似文献   

15.
In vitro and in vivo developmental competence of fresh and cryopreserved in vitro produced (IVP) bovine embryos was evaluated up to birth. Three experiments were done. The objective in the first experiment was to develop an optimal vitrification procedure for IVP bovine embryos by determining effects of exposure time (2, 5, 10, 20 min) and temperature (4, 22, 27 degrees C) in cryoprotective agents prior to vitrification on their post-thaw viability. The best combination was used in Experiments 2 and 3. In the second experiment, the importance of post-thaw morphologic selection on pregnancy rates was determined by transferring either selected or unselected single embryos. In the third experiment, pregnancy initiation, maintenance and calving results of vitrified embryos were compared with fresh and conventionally frozen embryos. Fetal losses, birth weights, gestation lengths and frequency of dystocia in the third experiment were monitored. The interaction of exposure time and temperature on both post-thaw re-expansion and hatching rates was significant (P < 0.01). Five minute exposure at 27 degrees C was optimal. In the second experiment, post-thaw selected vitrified embryos had higher pregnancy rates than unselected embryos (P < 0.05). In the third experiment, the pregnancy rate of vitrified embryos did not differ from that of fresh embryos (P > 0.05). However, pregnancy rate of conventionally frozen embryos was lower than that of fresh or vitrified embryos (P < 0.05). Of 92 calves born, 53 were male and 39 were female. Birth weights and dystocia scores of single-born calves did not differ between sexes (P > 0.05). Twin-born calves were lighter than single-born calves (P < 0.05). Overall, the data demonstrate that the transfer of vitrified IVP bovine embryos can result in healthy, apparently normal calves similar to those derived from transfer of fresh and conventionally frozen IVP bovine embryos.  相似文献   

16.
Choi YH  Lee BC  Lim JM  Kang SK  Hwang WS 《Theriogenology》2002,58(6):1187-1197
This study was conducted to establish an effective culture system for supporting in vitro development of cloned bovine embryos and to evaluate whether improved development in the optimal culture system could contribute to enhancing pregnancy and delivery outcomes after transfer. Enucleated oocytes at the metaphase II stage were reconstructed with serum-starved ear fibroblasts and cloned embryos were subsequently cultured for 168 h in vitro. In Experiment 1, cloned embryos were cultured in either modified Charles Rosenkrans 2 amino acid medium (mCR2aa) or modified synthetic oviduct fluid medium (mSOF). More (P < 0.05) 2-cell embryos (78% versus 92%), morulae (51% versus 69%) and blastocysts (2% versus 39%) were obtained after culture in mSOF than after culture in mCR2aa. In Experiment 2, cloned embryos were successively cultured in mSOF supplemented with various macromolecules during different periods of culture. A successive culture of oocytes in BSA-containing medium for 72 h and then in FBS-containing medium for the next 96 h yielded a higher rate of blastocyst formation (49% versus 25-36%) than other combinations (BSA to BSA or PVA to PVA, BSA or FBS). This macromolecule supplementation also significantly increased the number of total blastomeres (117.3 cells/blastocyst) and inner cell mass cells (ICM, 49.7 cells/blastocyst), and the ratio of ICM cells to trophoblast cells (TB, 0.98). In Experiment 3, a total of 85 blastocysts obtained from each 2-step culture were transferred individually to recipient cows at the end of the culture period and 32 pregnancies (38%) were diagnosed on Day 60 after transfer. However, no (P > 0.05) significant differences due to culture were apparent in the pregnancy outcome. Although six calves were produced using the 2-step culture regime of either BSA-BSA or PVA-FBS, no calves were produced using the successive culture of BSA then FBS, which optimized preimplantation development. In conclusion, mSOF has more potential to support the development of clone embryos than mCR2aa, and successive supplementation of BSA and FBS to mSOF further promotes blastocyst formation. However, enhanced development in vitro might not directly contribute to improving pregnancy outcomes.  相似文献   

17.
To date, cloned farm animals have been produced by nuclear transfer from embryonic, fetal, and adult cell types. However, mice completely derived from embryonic stem (ES) cells have been produced by aggregation with tetraploid embryos. The objective of the present study was to generate offspring completely derived from bovine ES-like cells. ES-like cells isolated from the inner cell mass of in vitro-produced embryos were aggregated with tetraploid bovine embryos generated by electrofusion at the 2-cell stage. A total of 77 embryo aggregates produced by coculture of two 8-cell-stage tetraploid embryos and a clump of ES-like cells were cultured in vitro. Twenty-eight of the aggregates developed to the blastocyst stage, and 12 of these were transferred to recipient cows. Six calves representing 2 singletons and 2 sets of twins were produced from the transfer of the chimeric embryos. Microsatellite analysis for the 6 calves demonstrated that one calf was chimeric in the hair roots and the another was chimeric in the liver. However, unfortunately, both of these calves died shortly after birth. Two of the placentae from the remaining pregnancies were also chimeric. These results indicate that the bovine ES-like cells used in these studies were able to contribute to development.  相似文献   

18.
Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6?. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine-bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.  相似文献   

19.
In this study, we evaluated a serum replacer (SR; Knockout SR, Invitrogen) in our in vitro culture systems. We hypothesized that SR would benefit bovine embryo development, since SR supported survival of embryonic stem cells (which originate from embryos). Experiment 1 compared oocyte maturation with SR versus fetal bovine serum (FBS). Following fertilization, blastocyst development was lower for oocytes matured with SR (21.5 versus 34.1, P<0.05). Experiment 2 evaluated SR for culturing embryos. Following fertilization, embryos were cultured for 3 days in KSOM, and then assigned to treatments: (1) KSOM static culture (KNM); (2) fresh KSOM (KD3); (3) KSOM+SR or (4) KSOM+FBS and cultured to Day 7 (fertilization=Day 0). Blastocyst development in FBS or SR was higher than either KNM or KD3 (48.2, 47.2, 32.7, and 35.5, respectively, P<0.05). Experiment 3 evaluated cryosurvival of embryos cultured in the same manner as Experiment 2. On Day 7, embryos were vitrified and upon warming, embryos cultured in SR had greater 24h survival rates (70.6%) than all other treatments (P<0.05). Finally, Experiment 4 evaluated effects of SR on pregnancy rate and development to term. Culture in SR was not detrimental to pregnancy or calving rates (50 and 50%, respectively), and SR calves had normal birth weights (mean=38.8 kg+/-1.5). In conclusion, the use of SR for maturation of oocytes was not beneficial; however, SR enhanced embryo culture by improving development in vitro, cryotolerance and survival, effectively replacing serum in culture.  相似文献   

20.
Data on 944 calves from 2228 in vitro-produced (IVP) bovine preimplantation embryos were compared with data on 2787 AI calves born in the same herds in 1995. Bovine preimplantation embryos were produced in vitro following ovum pick up (OPU) from donor cows and pregnant heifers in an open nucleus breeding program. After 7 d of in vitro culture on a BRL cell monolayer in the presence of 10% FCS, frozen-thawed expanded blastocysts and fresh morulae to expanded blastocysts were transferred into recipient heifers and cows at 119 contracted farms throughout the Netherlands. The pregnancy rate, as confirmed by palpation per rectum between 90 and 150 d after transfer was 43.5% for both fresh and frozen embryos. Data on IVP and AI calves were registered by the farmers. The percentage of calves with a congenital malformation and the percentage of male calves were related to the total number of calves born. Gestation length, birth weight (measured by a balance), perinatal mortality and ease of calving were analyzed in a subdataset (699 IVP and 2543 AI calves, respectively) by a comparative analysis of variance (ANOVA). The ANOVA model included herd, month of calving, sire nested within AI or IVP, parity and breed of the inseminated cow/embryo recipient, sex of calf, type of calf (AI or IVP) and two-way interactions between type of calf and sex, parity and breed. The percentage of calves with congenital malformations was 3.2% and 0.7% for IVP and AI calves, respectively. An increased incidence of hydro-allantois and abnormal spinal cords and limbs was observed in IVP calves. The percentage of male calves was significantly different between IVP and AI, 55.5% and 48.9%, respectively (Chi-square, 1 degree of freedom, P < 0.05). On the average, IVP calves showed a significant increase of birth weight by 10% (4-5 kg), a 3-d longer gestation period, 2.4% more perinatal mortality and a more difficult calving process compared to AI calves (P < 0.05). From these results it is concluded that calves produced by IVP deviate significantly from calves produced by AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号