首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
PII signal transduction plays a pervasive role in microbial nitrogen control. Different phylogenetic lineages have developed various signal transduction schemes around the highly conserved core of the signalling system, which consists of the PII proteins. Among all various bacterial PII signalling systems, the one in cyanobacteria is so far unique: in unicellular strains, the mode of covalent modification is by serine phosphorylation and the interpretation of the cellular nitrogen status occurs by measuring the 2-oxoglutarate levels. Recent advances have been the identification of the phospho-PII phosphatase, the resolution of the crystal structure of PII proteins from Synechococcus and Synechocystis strains and the identification of novel functions of PII regulation in cyanobacteria, which highlight the central role of PII signalling for the acclimation to changing carbon-nitrogen regimes.  相似文献   

4.
PII proteins are a protein family important to signal transduction in bacteria and plants. PII plays a critical role in regulation of carbon and nitrogen metabolism in cyanobacteria. Through conformation change and covalent modification, which are regulated by 2-oxoglutarate, PII interacts with different target proteins in response to changes of cellular energy status and carbon and nitrogen sources in cyanobacteria and regulates cellular metabolism. This article reports recent progress in PII research in cyanobacteria and discusses the mechanism of PII regulation of cellular metabolism.  相似文献   

5.
This article reviews the current state-of-the-art concerning the functions of the signal processing protein PII in cyanobacteria and plants, with a special focus on evolutionary aspects. We start out with a general introduction to PII proteins, their distribution, and their evolution. We also discuss PII-like proteins and domains, in particular, the similarity between ATP-phosphoribosyltransferase (ATP-PRT) and its PII-like domain and the complex between N-acetyl-l-glutamate kinase (NAGK) and its PII activator protein from oxygenic phototrophs. The structural basis of the function of PII as an ATP/ADP/2-oxoglutarate signal processor is described for Synechococcus elongatus PII. In both cyanobacteria and plants, a major target of PII regulation is NAGK, which catalyzes the committed step of arginine biosynthesis. The common principles of NAGK regulation by PII are outlined. Based on the observation that PII proteins from cyanobacteria and plants can functionally replace each other, the hypothesis that PII-dependent NAGK control was under selective pressure during the evolution of plastids of Chloroplastida and Rhodophyta is tested by bioinformatics approaches. It is noteworthy that two lineages of heterokont algae, diatoms and brown algae, also possess NAGK, albeit lacking PII; their NAGK however appears to have descended from an alphaproteobacterium and not from a cyanobacterium as in plants. We end this article by coming to the conclusion that during the evolution of plastids, PII lost its function in coordinating gene expression through the PipX-NtcA network but preserved its role in nitrogen (arginine) storage metabolism, and subsequently took over the fine-tuned regulation of carbon (fatty acid) storage metabolism, which is important in certain developmental stages of plants.  相似文献   

6.
PII proteins are a protein family important to signal transduction in bacteria and plants. PII plays a critical role in regulation of carbon and nitrogen metabolism in cyanobacteria. Through conformation change and covalent modification, which are regulated by 2-oxoglutarate, PII interacts with different target proteins in response to changes of cellular energy status and carbon and nitrogen sources in cyanobacteria and regulates cellular metabolism. This article reports recent progress in PII research in cyanobacteria and discusses the mechanism of PII regulation of cellular metabolism .  相似文献   

7.
In the heterocystous cyanobacterium Anabaena PCC 7120, the modification state of the signalling PII protein is regulated according to the nitrogen regime of the cells, as already observed in some unicellular cyanobacteria. However, during the adaptation to diazotrophic growth conditions, PII is phosphorylated in vegetative cells while unphosphorylated in heterocysts. Isolation of mutants affected on PII modification state and analysis of their phenotypes allow us to show the implication of PII in the regulation of molecular nitrogen assimilation and more specifically, the requirement of unmodified state of PII in the formation of polar nodules of cyanophycin in heterocysts.  相似文献   

8.
The PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular N status by being phosphorylated or dephosphorylated at a seryl residue. Here we show that the PII-modifying system responds to the activity of ammonium assimilation via the glutamine synthase-glutamate synthase pathway and to the state of CO2 fixation. To identify possible functions of PII in this microorganism, a PII-deficient mutant was created and its general phenotype was characterized. The analysis shows that the PII protein interferes with the regulation of enzymes required for nitrogen assimilation, although ammonium repression is still detectable in the PII-deficient mutant. We suggest that the phosphorylation and dephosphorylation of PII are part of a complex signal transduction network involved in global nitrogen control in cyanobacteria. In this regulatory process, PII might be involved in mediating the tight coordination between carbon and nitrogen assimilation.  相似文献   

9.
PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins.  相似文献   

10.
Jiang P  Ninfa AJ 《Biochemistry》2007,46(45):12979-12996
PII signal transduction proteins are among the most widely distributed signaling proteins in nature, controlling nitrogen assimilation in organisms ranging from bacteria to higher plants. PII proteins integrate signals of cellular metabolic status and interact with and regulate receptors that are signal transduction enzymes or key metabolic enzymes. Prior work with Escherichia coli PII showed that all signal transduction functions of PII required ATP binding to PII and that ATP binding was synergistic with the binding of alpha-ketoglutarate to PII. Furthermore, alpha-ketoglutarate, a cellular signal of nitrogen and carbon status, was observed to strongly regulate PII functions. Here, we show that in reconstituted signal transduction systems, ADP had a dramatic effect on PII regulation of two E. coli PII receptors, ATase, and NRII (NtrB), and on PII uridylylation by the signal transducing UTase/UR. ADP acted antagonistically to alpha-ketoglutarate, that is, low adenylylate energy charge acted to diminish signaling of nitrogen limitation. By individually studying the interactions that occur in the reconstituted signal transduction systems, we observed that essentially all PII and PII-UMP interactions were influenced by ADP. Our experiments also suggest that under certain conditions, the three nucleotide binding sites of the PII trimer may be occupied by combinations of ATP and ADP. In the aggregate, our results show that PII proteins, in addition to serving as sensors of alpha-ketoglutarate, have the capacity to serve as direct sensors of the adenylylate energy charge.  相似文献   

11.
12.
Kinch LN  Grishin NV 《Proteins》2002,48(1):75-84
Nitrogen regulatory (PII) proteins are signal transduction molecules involved in controlling nitrogen metabolism in prokaryots. PII proteins integrate the signals of intracellular nitrogen and carbon status into the control of enzymes involved in nitrogen assimilation. Using elaborate sequence similarity detection schemes, we show that five clusters of orthologs (COGs) and several small divergent protein groups belong to the PII superfamily and predict their structure to be a (betaalphabeta)(2) ferredoxin-like fold. Proteins from the newly emerged PII superfamily are present in all major phylogenetic lineages. The PII homologs are quite diverse, with below random (as low as 1%) pairwise sequence identities between some members of distant groups. Despite this sequence diversity, evidence suggests that the different subfamilies retain the PII trimeric structure important for ligand-binding site formation and maintain a conservation of conservations at residue positions important for PII function. Because most of the orthologous groups within the PII superfamily are composed entirely of hypothetical proteins, our remote homology-based structure prediction provides the only information about them. Analogous to structural genomics efforts, such prediction gives clues to the biological roles of these proteins and allows us to hypothesize about locations of functional sites on model structures or rationalize about available experimental information. For instance, conserved residues in one of the families map in close proximity to each other on PII structure, allowing for a possible metal-binding site in the proteins coded by the locus known to affect sensitivity to divalent metal ions. Presented analysis pushes the limits of sequence similarity searches and exemplifies one of the extreme cases of reliable sequence-based structure prediction. In conjunction with structural genomics efforts to shed light on protein function, our strategies make it possible to detect homology between highly diverse sequences and are aimed at understanding the most remote evolutionary connections in the protein world.  相似文献   

13.
14.
15.
In Synechocystis PCC 6803 as in other cyanobacteria, involvement of protein PII in the co-regulation of inorganic carbon and nitrogen metabolism was established based on post-translational modifications of the protein resulting from changes in the carbon/nitrogen regimes. Uptake of bicarbonate and nitrate in response to changes of the carbon and/or nitrogen regimes is altered in a PII-null mutant, indicating that both processes are under control of PII. Modulation of electron flow by addition of methyl viologen with or without duroquinol, or in a NAD(P)H dehydrogenase-deficient mutant, affects the phosphorylation level of PII. The redox state of the cells would thus act as a trigger for PII phosphorylation.  相似文献   

16.
17.
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.  相似文献   

18.
The family of PII signal transduction proteins consists of one of the most highly conserved signalling proteins in nature. The cyanobacterial PII homologue transmits signals on the nitrogen and carbon status of the cells through phosphorylation of a seryl residue. Recently, we identified a protein phosphatase 2C (PP2C) homologue from the cyanobacterium Synechocystis PCC 6803, termed PphA, to be the cellular phospho-PII (PII-P) phosphatase. In this investigation, we characterized the enzymatic properties of PphA and investigated the regulation of its catalytic activity towards PII-P. PphA dephosphorylates phosphocasein and PII-P with similar efficiency in a strictly Mg2+- or Mn2+-dependent reaction. Low-molecular-weight phosphorylated molecules are poor substrates for PphA. Its reactivity towards PII-P, but not towards phosphocasein, is inhibited by various nucleotides, suggesting that this effect is based on specific properties of the PII protein. The inhibitory effect of ATP can be strongly enhanced by the addition of 2-oxoglutarate or oxaloacetate. At low concentrations of 2-oxoglutarate, changes in the ATP levels within the physiological range affect the degree of PII-Pase inhibition, whereas at 2-oxoglutarate levels beyond 0.1 mM, inhibition is almost complete at very low ATP levels. This suggests that PII dephosphorylation is not only sensitive to 2-oxoglutarate and oxaloacetate levels, it also integrates signals from the energy charge of the cells under specific cellular conditions.  相似文献   

19.
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号