共查询到20条相似文献,搜索用时 0 毫秒
1.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation. 相似文献
2.
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC. 相似文献
3.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-β levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction. 相似文献
4.
Contraction and relaxation of cardiac muscle are regulated by the inhibitory and regulatory regions of troponin I (cTnI). Our previous FRET studies showed that the inhibitory region of cTnI in isolated troponin experiences a structural transition from a beta-turn/coil motif to an extended conformation upon Ca(2+) activation. During the relaxation process, the kinetics of the reversal of this conformation is coupled to the closing of the Ca(2+)-induced open conformation of the N-domain of troponin C (cTnC) and an interaction between cTnC and cTnI in their interface. We have since extended the structural kinetic study of the inhibitory region to fully regulated thin filament. Single-tryptophan and single-cysteine mutant cTnI(L129W/S151C) was labeled with 1,5-IAEDANS at Cys151, and the tryptophan-AEDANS pair served as a donor-acceptor pair. Labeled cTnI mutant was used to prepare regulated thin filaments. Ca(2+)-induced conformational changes in the segment of Trp129-Cys151 of cTnI were monitored by FRET sensitized acceptor (AEDANS) emission in Ca(2+) titration and stopped-flow measurements. Control experiments suggested energy transfer from endogenous tryptophan residues of actin and myosin S1 to AEDANS attached to Cys151 of cTnI was very small and Ca(2+) independent. The present results show that the rate of Ca(2+)-induced structural transition and Ca(2+) sensitivity of the inhibitory region of cTnI were modified by (1) thin filament formation, (2) the presence of strongly bound S1, and (3) PKA phosphorylation of the N-terminus of cTnI. Ca(2+) sensitivity was not significantly changed by the presence of cTm and actin. However, the cTn-cTm interaction decreased the cooperativity and kinetics of the structural transition within cTnI, while actin filaments elicited opposite effects. The strongly bound S1 significantly increased the Ca(2+) sensitivity and slowed down the kinetics of structural transition. In contrast, PKA phosphorylation of cTnI decreased the Ca(2+) sensitivity and accelerated the structural transition rate of the inhibitory region of cTnI on thin filaments. These results support the idea of a feedback mechanism by strong cross-bridge interaction with actin and provide insights on the molecular basis for the fine tuning of cardiac function by beta-adrenergic stimulation. 相似文献
5.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. 相似文献
6.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca 2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI 147-163 but not toward Ca 2+. The Kd of cNTnC for cTnI 147-163 was found to be 600 μM in the presence of cTnI 1-29 and 370 μM in the presence of cTn1 1-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca 2+ affinity per se and in complex with the cTnI N-terminus (cTnI 1-29 and cTnI 1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI 147-163 was significantly perturbed, both alone and in complex with cTnI 1-29 and cTnI 1-29PP, which is likely to be responsible for the development of malfunctions. 相似文献
7.
Quantitative determination of reactive oxygen species and reactive nitrogen species in body fluids, tissues or cells has always been problematic due to their high chemical reactivity and the resulting short half-life. This high reactivity may involve reversible and/or irreversible protein modifications, in particular the covalent oxidative modification of specific amino acid residues. Thus, the occurrence of reactive oxygen species and reactive nitrogen species can be monitored indirectly from the identification of specific protein-chemical footprints. In combination with classical gel-based proteomics or liquid chromatography labeling or label-free techniques, mass spectrometry has emerged as a powerful tool to identify these protein modifications in biological samples. In this review, we present the main methodological approaches for gel-based proteomics and quantitative mass spectrometry applied to oxidative protein modifications, mainly Cys. Representative examples from their application in identifying respective biomarkers in diseases related to oxidative stress are also presented. 相似文献
8.
This work demonstrates that amino acid analysis based on isotope dilution mass spectrometry (IDMS) can be applied to quantify proteins having different complexities and natures. Five proteins and one decapeptide were selected for the study: C-reactive protein (CRP), beta-2-microglobulin (B2 M), cystatine C (CysC), human serum albumin (HSA), Ara h1, and angiotensin I. The quantification was based on the determination of four amino acids, proline (Pro), isoleucine (Ile), valine (Val), and phenylalanine (Phe) within a working range between 5 and 100 pmol/injection of each amino acid, after 60 min digestion with HCl at 150 °C. The amino acids were selected taking into account their abundance in the protein sequence and to include the more difficult to break peptide bonds. Quantification of the protein amounts calculated from each amino acid is consistent, indicating that the method is working reliably. This consistency points to a complete hydrolysis of the proteins. The trueness of the method was proven when dry mass determination after dialysis was applied to HSA and CRP and the results were compared to those from amino acid analysis. Traceability to SI was assured by extensive characterisation of the amino acid calibrants by nuclear magnetic resonance, neutron activation analysis, and Karl Fischer titration. 相似文献
9.
Introduction: Since the completion of genome sequencing, gene silencing technologies have emerged as powerful tools to study gene functions in various biological processes, both in vivo and in vitro. Moreover, they have also been proposed as therapeutic agents to inhibit selected genes in a variety of pathological conditions, such as cancer, neurodegenerative, and cardiovascular diseases. Area covered: This review summarizes the mechanisms of action and applications of genome editing tools, from RNA interference to clustered regularly interspaced short palindromic repeats-based systems, in research and in clinics. We describe their essential role in high-throughput genetic screens and, in particular, in functional proteomics studies, to identify diagnostic markers and therapeutic targets. Indeed, gene silencing and proteomics have been extensively integrated to study global proteome changes, posttranslational modifications, and protein–protein interactions. Expert commentary: Functional proteomics approaches that leverage gene silencing tools have been successfully applied to examine the role of several genes in various contexts, leading to a deeper knowledge of biological pathways and disease mechanisms. Recent developments of gene silencing tools have improved their performance, also in terms of off-targets effects reduction, paving the way for a wider therapeutic application of these systems. 相似文献
10.
Microcalorimetric titrations have been used to study the binding of Ca2+ to cardiac troponin C. Measurements were made both in the presence and in the absence of Mg2+, and at temperatures of 5 degrees, 15 degrees and 25 degrees C. Changes in enthalpy, entropy and heat capacity of troponin C associated with Ca binding have been determined. Cardiac troponin C exhibited a decrease in enthalpy and an increase in entropy associated with Ca binding. Enthalpy changes increased linearly with temperature, indicating that the Ca binding causes negative changes in the heat capacity of troponin C. These results show that the Ca binding causes a strong hydrophobic effect and a tightening of the molecular structure of cardiac troponin C. 相似文献
11.
Introduction: The last 20 years have seen significant improvements in the analytical capabilities of biological mass spectrometry (MS). Studies using advanced MS have resulted in new insights into cell biology and the etiology of diseases as well as its use in clinical applications. Areas covered: This review discusses recent developments in MS-based technologies and their cancer-related applications with a focus on proteomics. It also discusses the issues around translating the research findings to the clinic and provides an outline of where the field is moving. Expert commentary: Proteomics has been problematic to adapt for the clinical setting. However, MS-based techniques continue to demonstrate potential in novel clinical uses beyond classical cancer proteomics. 相似文献
12.
Although homeostatic disturbance of the blood pH and calcium in the vicinity of tissue injury/malignancy/local infection seems subtle, it can cause substantial pathophysiological consequences, a phenomenon which has remained largely unexplored. The fibrinogen-related proteins (FREPs) containing fibrinogen-like domain (FBG) represent a conserved protein family with a common calcium-binding region, implying the presence of elements responsive to physiological perturbation. Here, we studied the molecular interaction between a representative FREP, the M-ficolin, and an acute phase blood protein, the C-reactive protein (CRP), both of which are known to trigger and control seminal pathways in infection and injury. Using hydrogen-deuterium exchange mass spectrometry, we showed that the C-terminal region of M-ficolin FBG underwent dramatic conformational change upon pH and calcium perturbations. Biochemical and biophysical assays showed that under defined pathophysiological condition (pH 6.5, 2.0 mM calcium), the FBG:CRP interaction occurred more strongly compared to that under physiological condition (pH 7.4, 2.5 mM calcium). We identified the binding interface between CRP and FBG, locating it to the pH- and calcium-sensitive C-terminal region of FBG. By site-directed mutagenesis, we determined H284 in the N-acetylglucosamine (GlcNAc)-binding pocket of the FBG, to be the critical CRP-binding residue. This conformational switch involving H284, explains how the pathophysiologically-driven FBG:CRP interaction diverts the M-ficolin away from GlcNAc/pathogen-recognition to host protein–protein interaction, thus enabling the host to regain homeostatic control. Our elucidation of the binding interface at the flexible FBG domain provides insights into the bioactive centre of the M-ficolin, and possibly other FREPs, which might aid future development of immunomodulators. 相似文献
13.
The troponin (Tn) complex is composed of troponin T, troponin C and troponin I. The cardiac isoform of TnI (cTnI) is modified and released in blood of patients with cardiovascular diseases as a heterogeneous mixture of free, complexed and posttranslationally modified forms. With the aim to determine later, whether specific forms of cTnI could be associated with the different pathologies leading to cTnI release, the cTnI forms present in the plasma from 64 patients with acute myocardial infarction (AMI) have been analysed by SELDI-TOF MS using anti-TnI mAbs coupled to PS20 ProteinChips arrays. Upfront immunoaffinity enrichment using anti-cTnI 19C7 mAb allowed us to detect cTnI and bis-phosphorylated cTnI in 11/12 and 9/12 analyses respectively, as well as truncated cTnI in plasma with concentration of cTnI as low as 8 ng/mL. Cardiac troponin C (cTnC) and covalent TnIC complex were also found in pools of plasma with higher concentrations of cTnI. MAb 19C7-affinity SELDI-TOF MS analysis performed after immunopurification of one pool of AMI plasma with anti-free cTnI, anti-cTnC, and anti-phosphorylated cTnI mAbs indicated that intact and bis-phosphorylated cTnI were mostly under the free form. Besides, a 18 718 m/z peak could correspond to a truncated phosphorylated form initially complexed with cTnC. 相似文献
14.
3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5–18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro 707 and newly identified sites at Pro 716 and Pro 719, at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon. 相似文献
15.
We present a rapid and efficient in-solution enzymatic digestion protocol suitable for mass spectrometry-based absolute protein quantification techniques. The digestion method employs RapiGest SF (an acid-labile surfactant), an excess amount of modified trypsin (enzyme-to-substrate ratio of 2.5:1), and an incubation time of 2 h. No reduction/alkylation reagents are used. Digestion parameters were varied systematically to monitor their effect on rate and completeness of digestion. To demonstrate the general applicability of the method, the optimization was done using a viral hemagglutinin (HA) as a model protein and then applied to ricin, a potent protein toxin extracted from the castor bean ( Ricinus communis). The parameters that were optimized included incubation time, concentration of RapiGest SF, enzyme-to-substrate ratio, and incubation temperature. The optimization was done by comparing the yields from two protein-specific peptides originating from two different sites of the HA protein. The analysis was performed by liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode using isotopically labeled peptide standards for quantification. 相似文献
16.
Two mass spectrometric methods were established for the quantitative analyses of alpha-tocopherol (TH) and its oxidation product alpha-tocopherolquinone (TQ) in human plasma. Both methods make use of isotopically labeled internal standards of different levels of deuteration (d3-TH and d6-TQ). Plasma (100 microl) was saponified in the presence of a mixture of antioxidants, and then TH and TQ were extracted with hexane. With the GC-MS method, the analytes were first converted into O-trimethylsilyl derivatives before analysis in the selective ion monitoring mode. The derivatization procedure led to the quantitative conversion of TQ into the O-trimethylsilyl derivative of tocopherolhydroquinone, giving rise to a more stable molecule with less fragmentation than for TQ. The increased stability of the molecule resulted in an enhanced contribution of the base peak to the total observed ions and therefore an increased sensitivity of the base peak for quantification. With the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, TH and TQ were detected by multiple reaction monitoring after positive electrospray ionization. The GC-MS and LC-MS/MS methods showed nearly the same accuracy (>95%) and the same within-day precisions, with less than 5 and 10% for TH and TQ, respectively. The between-day precision and the limit of quantification for TQ in plasma were better by LC-MS/MS (4%; 3 nM) than by GC-MS (21%; 10 nM). Analysis and method validation were carried out with plasma samples obtained from a male volunteer pre- and postexercise. Both techniques showed that the ratio of TQ/TH was elevated by 35% immediately after exercise and had returned to basal levels when measured 24 h later. 相似文献
17.
Prions are the agents of a series of lethal neurodegenerative diseases. They are composed largely, if not entirely, of the host-encoded prion protein (PrP), which can exist in the cellular isoform PrP C and the pathological isoform PrP Sc. The conformational change of the α-helical PrP C into β-sheet-rich PrP Sc is the fundamental event of prion disease. The transition of recombinant PrP from a PrP C-like into a PrP Sc-like conformation can be induced in vitro by submicellar concentrations of SDS. An α-helical dimer was identified that might represent either the native state of PrP C or the first step from the monomeric PrP C to highly aggregated PrP Sc. In the present study, the molecular structure of these dimers was analyzed by introducing covalent cross-links using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Inter- and intramolecular bonds between directly neighboured amino groups and carboxy groups were generated. The bonds formed in PrP dimers of recombinant PrP (90-231) were identified by tryptic digestion and subsequent mass spectrometric analysis. Intra- and intermolecular cross-links between N-terminal glycine and three acidic amino acid side chains in the globular part of PrP were identified, showing the N-terminal amino acids (90-124) are not as flexible as known from NMR analysis. When the cross-linked sites were used as structural constraint, molecular modeling calculations yielded a structural model for PrP dimer and its monomeric subunit, including the folding of amino acids 90-124 in addition to the known structure. Molecular dynamics of the structure after release of the constraint indicated an intrinsic stability of the domain of amino acids 90-124. 相似文献
19.
目的开发一种^125I-PLGA标记物合成的新技术,并对新合成标记物的性质进行鉴定。方法在密闭容器中,应用重复加热的方法,使Na^125I与PLGA氯仿溶液反应,实施PLGA的^125I放射性标记。并对^125I-PLGA标记物的放射性活度进行检测。结果经过上述标记过程,成功合成了^125I-PLGA标记物,此标记物释放γ射线,放射性活度和材料质量成正比。结论^125I-PLGA标记物与传统的放射性核素标记物相比,具有合成工艺简单、放射性污染易于控制、放射性活度易于检测等优点。 相似文献
20.
A highly selective and sensitive method for the simultaneous analysis of several plant hormones and their metabolites is described. The method combines high-performance liquid chromatography (HPLC) with positive and negative electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to quantify a broad range of chemically and structurally diverse compounds. The addition of deuterium-labeled analogs for these compounds prior to sample extraction permits accurate quantification by multiple reaction monitoring (MRM). Endogenous levels of abscisic acid (ABA), abscisic acid glucose ester (ABA-GE), 7'-hydroxy-abscisic acid (7'-OH-ABA), phaseic acid (PA), dihydrophaseic acid (DPA), indole-3-acetic acid (IAA), indole-3-aspartate (IAAsp), zeatin (Z), zeatin riboside (ZR), isopentenyladenine (2iP), isopentenyladenosine (IPA), and gibberellins (GA)1, GA3, GA4, and GA7 were determined simultaneously in a single run. Detection limits ranged from 0.682 fmol for Z to 1.53 pmol for ABA. The method was applied to the analysis of plant hormones and hormonal metabolites associated with seed dormancy and germination in lettuce (Lactuca sativa L. cv. Grand Rapids), using extracts from only 50 to 100 mg DW of seed. Thermodormancy was induced by incubating seeds at 33 degrees C instead of 23 degrees C. Germinating seeds transiently accumulated high levels of ABA-GE. In contrast, thermodormant seeds transiently accumulated high levels of DPA after 7 days at 33 degrees C. GA1 and GA3 were detected during germination, and levels of GA1 increased during early post-germinative growth. After several days of incubation, thermodormant seeds exhibited a striking transient accumulation of IAA, which did not occur in seeds germinating at 23 degrees C. We conclude that hormone metabolism in thermodormant seeds is surprisingly active and is significantly different from that of germinating seeds. 相似文献
|