共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
《Expert review of proteomics》2013,10(4):521-539
Interest in the characterization of the salivary proteome has increased in the last few years. This review discusses the different techniques and methodologies applied to the separation and identification of salivary proteins. Nowadays, proteomic techniques are the state of the art for the analysis of biologic materials and saliva is no exception. 2D electrophoresis and tryptic digest analysis by mass spectrometry are the typical methodology, but new approaches using 2D liquid chromatography/mass spectrometry methods have already been introduced for saliva analysis. Due to their important physiologic role in the oral cavity, low-molecular-weight proteins and peptides are also included in this article and the methodologies discussed. 相似文献
3.
The Human Proteome Project stands to eclipse the Human Genome Project in terms of scope, content and interpretation. Its outputs, in conjunction with recent developments across the proteomics community, provide new tools for cancer research with the potential of providing clinically relevant insights into the disease. These collectively may guide the development of future diagnosis, surveillance and treatment strategies. Having established a robust organizational framework within the international community, the Human Proteome Organization and the proteomics community at large have made significant advances in biomarker discovery, detection, molecular imaging and in exploring tumor heterogeneity. Here, the authors discuss some developments in cancer proteomics and how they can be implemented to reduce the global burden of the disease. 相似文献
4.
Iakes Ezkurdia Enrique Calvo Angela Del Pozo Jesús Vázquez Alfonso Valencia 《Expert review of proteomics》2015,12(6):579-593
The authors have carried out an investigation of the two “draft maps of the human proteome” published in 2014 in Nature. The findings include an abundance of poor spectra, low-scoring peptide-spectrum matches and incorrectly identified proteins in both these studies, highlighting clear issues with the application of false discovery rates. This noise means that the claims made by the two papers – the identification of high numbers of protein coding genes, the detection of novel coding regions and the draft tissue maps themselves – should be treated with considerable caution. The authors recommend that clinicians and researchers do not use the unfiltered data from these studies. Despite this these studies will inspire further investigation into tissue-based proteomics. As long as this future work has proper quality controls, it could help produce a consensus map of the human proteome and improve our understanding of the processes that underlie health and disease. 相似文献
5.
Thomas A Stevens AP Klein MS Hellerbrand C Dettmer K Gronwald W Oefner PJ Reinders J 《Proteomics》2012,12(9):1437-1451
Despite the increasing incidence of nonalcoholic steatohepatitis (NASH) with the rise in lifestyle-related diseases such as the metabolic syndrome, little is known about the changes in the liver proteome that precede the onset of inflammation and fibrosis. Here, we investigated early changes in the liver-soluble proteome of female C57BL/6N mice fed an NASH-inducing diet by 2D-DIGE and nano-HPLC-MS/MS. In parallel, histology and measurements of hepatic content of triglycerides, cholesterol and intermediates of the methionine cycle were performed. Hepatic steatosis manifested itself after 2 days of feeding, albeit significant changes in the liver-soluble proteome were not evident before day 10 in the absence of inflammatory or fibrotic signs. Proteomic alterations affected mainly energy and amino acid metabolism, detoxification processes, urea cycle, and the one-carbon/S-adenosylmethionine pathways. Additionally, intermediates of relevant affected pathways were quantified from liver tissue, confirming the findings from the proteomic analysis. 相似文献
6.
7.
Alessandra Podda Giovanni Checcucci Wafa Mouhaya Delphine Centeno Valerie Rofidal Renata Del Carratore François Luro Raphael Morillon Patrick Ollitrault Bianca Elena Maserti 《Journal of plant physiology》2013
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl− accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found. 相似文献
8.
Maserti BE Del Carratore R Croce CM Podda A Migheli Q Froelicher Y Luro F Morillon R Ollitrault P Talon M Rossignol M 《Journal of plant physiology》2011,168(4):392-402
Citrus plants are currently facing biotic and abiotic stresses. Therefore, the characterization of molecular traits involved in the response mechanisms to stress could facilitate selection of resistant varieties. Although large cDNA microarray profiling has been generated in citrus tissues, the available protein expression data are scarce. In this study, to identify differentially expressed proteins in Citrus clementina leaves after infestation by the two-spotted spider mite Tetranychus urticae, a proteome comparison was undertaken using two-dimensional gel electrophoresis. The citrus leaf proteome profile was also compared with that of leaves treated over 0-72 h with methyl jasmonate, a compound playing a key role in the defense mechanisms of plants to insect/arthropod attack. Significant variations were observed for 110 protein spots after spider mite infestation and 67 protein spots after MeJA treatments. Of these, 50 proteins were successfully identified by liquid chromatography-mass spectrometry-tandem mass spectrometry. The majority constituted photosynthesis- and metabolism-related proteins. Five were oxidative stress associated enzymes, including phospholipid glutathione peroxidase, a salt stressed associated protein, ascorbate peroxidase and Mn-superoxide dismutase. Seven were defense-related proteins, such as the pathogenesis-related acidic chitinase, the protease inhibitor miraculin-like protein, and a lectin-like protein. This is the first report of differentially regulated proteins after T. urticae attack and exogenous MeJA application in citrus leaves. 相似文献
9.
Elke Hammer Truong Quoc Phong Leif Steil Karin Klingel Manuela Gesell Salazar Jörg Bernhardt Reinhard Kandolf Heyo K. Kroemer Stephan B. Felix Uwe Völker 《Proteomics》2010,10(9):1802-1818
Enteroviral myocarditis displays highly diverse clinical phenotypes ranging from mild dyspnoea or chest pain to cardiogenic shock and death. Despite detailed studies of the virus life cycle in vitro and in vivo, the molecular interplay between host and virus in disease progression is largely unresolved. Murine models of Coxsackievirus B3 (CVB3)‐induced myocarditis well mimic the human disease patterns and can thus be explored to study mechanisms leading from acute to chronic myocarditis. Here, we present a 2‐D gel‐based proteomic survey of the changes in the murine cardiac proteome that occurs following infection with CVB3. In total, 136 distinct proteins were affected. Proteins, which are involved in immunity and defense and protein metabolism/modification displayed pronounced changes in intensity not only during acute but also at later stages of CVB3 myocarditis. Proteins involved in maintenance of cell structure and associated proteins were particularly influenced in the acute phase of myocarditis, whereas reduction of levels of metabolic enzymes was observed in chronic myocarditis. Studies about changes in protein intensities were complemented by an analysis of protein phosphorylation that revealed infection‐associated changes in the phosphorylation of myosin binding protein C, atrial and ventricular isoforms of myosin regulatory light chain 2, desmin, and Rab GDP dissociation inhibitor beta‐2. 相似文献
10.
Song‐Lin Shi Ying Liang Qi‐Fu Li Qing‐Rong Liu Guang‐Jun Jing San‐Ying Wang Xiu‐Yan Zhang Fu‐Yun Wu 《Journal of cellular biochemistry》2010,111(1):67-74
In this article, we selectively extracted the nuclear matrix and intermediate filament system of human neuroblastoma SK‐N‐SH cells pre‐ and post‐treated with retinoic acid (RA). The distribution of nucleophosmin (NPM) in the nuclear matrix and its colocalization with several products of related genes were investigated. Results from two‐dimensional gel electrophoresis and MALDI‐TOF showed that NPM was a component of the nuclear matrix and its expression in SK‐N‐SH cells post‐treated with RA was down‐regulated. Immunofluorescent microscopy observations further showed that NPM was localized in the nuclear matrix of SK‐N‐SH cells, and its expression level and distribution were altered after treatment with RA. The colocalization of NPM with c‐myc, c‐fos, p53, and Rb in SK‐N‐SH cells was observed under a laser scanning confocal microscope, but the colocalization region was changed by RA. Our results prove that NPM is a nuclear matrix protein, which is localized in nuclear matrix fibers. The colocalization of NPM with its related genes and oncogenes affect the differentiation of SK‐N‐SH cells. The expression of NPM and its distribution in the process of cell differentiation deserve more intensive investigation. J. Cell. Biochem. 111: 67–74, 2010. © 2010 Wiley‐Liss, Inc. 相似文献