首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To analyse the germination and its heterogeneity of individual spores of Clostridium perfringens. Methods and Results: Germination of individual wild‐type Cl. perfringens spores was followed by monitoring Ca‐dipicolinic acid (CaDPA) release and by differential interference contrast (DIC) microscopy. Following the addition of KCl that acts via germinant receptors (GRs), there was a long variable lag period (Tlag) with slow release of c. 25% of CaDPA, then rapid release of remaining CaDPA in c. 2 min (ΔTrelease) and a parallel decrease in DIC image intensity, and a final decrease of c. 25% in DIC image intensity during spore cortex hydrolysis. Spores lacking the essential cortex‐lytic enzyme (CLE) (sleC spores) exhibited the same features during GR‐dependent germination, but with longer average Tlag values, and no decrease in DIC image intensity because of cortex hydrolysis after full CaDPA release. The Tlag of wild‐type spores in KCl germination was increased significantly by lower germinant concentrations and suboptimal heat activation. Wild‐type and sleC spores had identical average Tlag and ΔTrelease values in dodecylamine germination that does not utilize GRs. Conclusions: Most of these results were essentially identical to those reported for the germination of individual spores of Bacillus species. However, individual sleC Cl. perfringens spores germinated inefficiently with either KCl or exogenous CaDPA, in contrast to CLE‐deficient Bacillus spores, indicating that germination of these species’ spores is not completely identical. Significance and Impact of the Study: This work provides information on the kinetic germination and its heterogeneity of individual spores of Cl. perfringens.  相似文献   

2.
The hydrolysis of the bacterial spore peptidoglycan (cortex) is a crucial event in spore germination. It has been suggested that SleC and SleM, which are conserved among clostridia, are to be considered putative cortex-lytic enzymes in Clostridium perfringens. However, little is known about the details of the hydrolytic process by these enzymes during germination, except that SleM functions as a muramidase. Muropeptides derived from SleC-digested decoated spores of a Bacillus subtilis mutant that lacks the enzymes, SleB, YaaH and CwlJ, related to cortex hydrolysis were identified by amino acid analysis and mass spectrometry. The results suggest that SleC is most likely a bifunctional enzyme possessing lytic transglycosylase activity and N-acetylmuramoyl-L-alanine amidase activity confined to cross-linked tetrapeptide-tetrapeptide moieties of the cortex structure. Furthermore, it appears that during germination of Clostridium perfringens spores, SleC causes merely small and local changes in the cortex structure, which are necessary before SleM can function.  相似文献   

3.
The genome of the pathogen Clostridium perfringens encodes two proteins, GerO and GerQ, homologous to monovalent cation transporters suggested to have roles in the germination of spores of some Bacillus species. GerO and GerQ were able to transport monovalent cations (K+ and/or Na+) in Escherichia coli, and gerO and gerQ were expressed only in the mother cell compartment during C. perfringens sporulation. C. perfringens spores lacking GerO were defective in germination with a rich medium, KCl, l-asparagine, and a 1:1 chelate of Ca2+ and dipicolinic acid (DPA), but not with dodecylamine, and the defect was prior to DPA release in germination. All defects in gerO spores were complemented by ectopic expression of wild-type gerO. Loss of GerQ had much smaller effects on spore germination, and these effects were most evident in spores also lacking GerO. A modeled structure of GerO was similar to that of the E. coli Na+/H+ antiporter NhaA, and GerO, but not GerQ contained two adjacent Asp residues thought to be important in the function of this group of cation transporters. Replacement of these adjacent Asp residues in GerO with Asn reduced the protein''s ability to complement the germination defect in gerO spores but not the ability to restore cation transport to E. coli cells defective in K+ uptake. Together, these data suggest that monovalent cation transporters play some role in C. perfringens spore germination. However, it is not clear whether this role is directly in germination or perhaps in spore formation.Clostridium perfringens is a gram-positive, spore-forming anaerobic pathogen that causes diseases in animals and humans (13). C. perfringens spores are metabolically dormant, are resistant to many environmental insults, and can survive for long periods. Once conditions are favorable, these spores can germinate, outgrow, return to vegetative growth, and then release toxins and cause disease (14).Bacterial spores initiate germination when they sense a variety of compounds termed germinants, which include nutrients, a 1:1 chelate of Ca2+ and pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) (Ca-DPA) and cationic surfactants (21, 31). In spores of Bacillus species, nutrient germinants are sensed by specific germinant receptors located in the spore''s inner membrane, each generally encoded by tricistronic operons of the gerA family. In Bacillus megaterium spores, the interaction of nutrient germinants with their cognate receptors leads to an energy independent efflux of ∼80% of the spore''s depot of Na+ and K+, as well as much H+ efflux causing a rise of the spore core''s pH, all within the first 5 min of germination; this efflux is followed by reuptake of K+ by an energy-dependent system (33). The spores'' large depot of Ca-DPA is also released shortly after monovalent cation release. The mechanism of release of monovalent cations during spore germination is not known, but monovalent cation antiporters could be involved somehow in this event. Indeed, a member of the CPA-2 monovalent cation-proton antiporter family of membrane transport proteins (27), GrmA, is essential for germination of B. megaterium ATCC 12872 spores (34), since grmA inactivation makes spores unable to release their DPA and complete germination with a variety of germinants. Similarly, in Bacillus cereus ATCC 10876, a GrmA-type homologue, GerN, is essential for spore germination with inosine but not l-alanine (35), and studies with everted vesicles have shown that GerN possesses electrogenic Na+/H+-K+ antiporter activity (32). The GerN homolog, GerT, also plays a minor role in B. cereus spore germination with inosine, as well as a major role in spore outgrowth under some conditions (29). However, in contrast to these latter results, GrmA-like antiporters appear to have no role in the germination of spores of B. megaterium QM B1551 and Bacillus subtilis (3).In C. perfringens, there is no intact tricistronic gerA-like operon, and the only locus that encodes the three proteins (A, B, and C) of a likely germinant receptor is the gerK locus, comprising a bicistronic gerKA-gerKC operon, and a gerKB gene located just upstream of gerKA-gerKC but in the opposite orientation (16). However, GerKA and GerKC appear able to function in spore germination in the absence of GerKB (23). The lack of a classical GerA-type germinant receptor and the fact that C. perfringens spores germinate with K+ ions alone (21), raises the possibility that GrmA-like antiporters might also play some role in C. perfringens spore germination. The genome of C. perfringens strain SM101 has two genes encoding putative GrmA-like antiporters (see Fig. S1 in the supplemental material) that we have termed gerO (CPR0227) and gerQ (CPR1038). Orthologs of the gerO and gerQ genes are also present in the genomes of nine additional C. perfringens strains (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). In present study we have constructed gerO, gerQ, and gerO gerQ strains of C. perfringens and have examined the roles of GerO and GerQ in spore germination. The results show that GerO is essential for normal germination of C. perfringens spores, whereas GerQ plays at most only a minor role.  相似文献   

4.

Questions

Fire is a crucial component of many ecosystems. Plants whose seeds germinate in response to smoke may benefit from resource availability in the post‐fire environment. Smoke can influence germination timing and success, as well as seedling vigour, resulting in burgeoning research interest in smoke‐responsive germination. Research in this field has largely focused on four key ‘Mediterranean‐type’ fire‐prone ecosystems: the Mediterranean Basin, South African fynbos, Californian chaparral and Western Australia. There are far fewer studies from south‐eastern Australia, a fire‐prone but not “Mediterranean‐type” region. How does smoke‐responsive germination in this region vary according to ecological, phylogenetic, and methodological variables?

Location

South‐eastern Australia.

Methods

We investigated patterns of smoke‐promoted germination in south‐eastern Australian plants across habitat types, growth forms, fire response strategies, phylogeny, taxonomic levels and smoke application methods. We compiled and interrogated data comprising 303 entries on germination responses to smoke in 233 south‐eastern Australian plant species, from 33 different sources.

Results

Smoke‐responsive germination occurs at a lower rate (~41% of tested species) in south‐eastern Australian flora than it does in fynbos and Western Australian floras, and there is clear patterning within these data. Obligate‐seeding species were more likely to respond, Leguminosae and Rubiaceae were less likely to respond (although we question the generality of these results), while Poaceae were more likely to respond to smoke. Finally, studies using aerosol smoke and studies conducted in situ were most likely to find smoke‐promoted germination.

Conclusions

Obligate seeders and Poaceae may be selected for in habitats with higher fire frequencies, consistent with literature suggesting that short inter‐fire intervals favour grasslands over forests. These findings may be particular to south‐eastern Australia, or more widely applicable; more broad‐scale comparative research will reveal the answer. By synthesizing the south‐eastern Australian smoke germination literature we broaden our understanding beyond the better‐studied Mediterranean‐type floras.
  相似文献   

5.
Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co‐germinant. The aim of this study was to determine whether any other amino acids act as co‐germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re‐germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co‐germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l?1. Conclusions: Histidine was found to be a co‐germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.  相似文献   

6.
Recent reduction in the ozone shield due to manufactured chlorofluorocarbons raised considerable interest in the ecological and physiological consequences of UV‐B radiation (λ=280–315 nm) in macroalgae. However, early life stages of macroalgae have received little attention in regard to their UV‐B sensitivity and UV‐B defensive mechanisms. Germination of UV‐B irradiated spores of the intertidal green alga Ulva pertusa Kjellman was significantly lower than in unexposed controls, and the degree of reduction correlated with the UV doses. After exposure to moderate levels of UV‐B irradiation, subsequent exposure to visible light caused differential germination in an irradiance‐ and wavelength‐dependent manner. Significantly higher germination was found at higher photon irradiances and in blue light compared with white and red light. The action spectrum for photoreactivation of germination in UV‐B irradiated U. pertusa spores shows a major peak at 435 nm with a smaller but significant peak at 385 nm. When exposed to December sunlight, the germination percentage of U. pertusa spores exposed to 1 h of solar radiation reached 100% regardless of the irradiation treatment conditions. After a 2‐h exposure to sunlight, however, there was complete inhibition of germination in PAR+UV‐A+UV‐B in contrast to 100% germination in PAR or PAR+UV‐A. In addition to mat‐forming characteristics that would act as a selective UV‐B filter for settled spores under the parental canopy, light‐driven repair of germination after UV‐B exposure could explain successful continuation of U. pertusa spore germination in intertidal settings possibly affected by intense solar UV‐B radiation.  相似文献   

7.

Background

Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores.

Results and discussion

The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease).

Conclusions

The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.
  相似文献   

8.
The Gram-positive, anaerobic, spore-forming bacterium Clostridium perfringens causes a variety of diseases in both humans and animals, and spore germination is thought to be the first stage of C. perfringens infection. Previous studies have indicated that the germinant receptor (GR) proteins encoded by the bicistronic gerKA-gerKC operon as well as the proteins encoded by the gerKB and gerAA genes are required for normal germination of C. perfringens spores. We now report the individual role of these GR proteins by analyzing the germination of strains carrying mutations in gerKA, gerKC, or both gerKB and gerAA. Western blot analysis was also used to determine the location and numbers of GerKC proteins in spores. Conclusions from this work include the following: (i) gerKC mutant spores germinate extremely poorly with KCl, l-asparagine, a mixture of asparagine and KCl, or NaPi; (ii) gerKC spores germinate significantly more slowly than wild-type and other GR mutant spores with a 1:1 chelate of Ca2+ and dipicolinic acid and very slightly more slowly with dodecylamine; (iii) the germination defects in gerKC spores are largely restored by expressing the wild-type gerKA-gerKC operon in trans; (iv) GerKC is required for the spores'' viability, almost certainly because of the gerKC spores'' poor germination; and (v) GerKC is located in the spores'' inner membrane, with ∼250 molecules/spore. Collectively, these results indicate that GerKC is the main GR protein required for nutrient and nonnutrient germination of spores of C. perfringens food-poisoning isolates.  相似文献   

9.
Clostridium perfringens type A isolates carrying a chromosomal copy of the enterotoxin (cpe) gene are involved in the majority of food poisoning (FP) outbreaks, while type A isolates carrying a plasmid-borne cpe gene are involved in C. perfringens-associated non-food-borne (NFB) gastrointestinal diseases. To cause diseases, C. perfringens spores must germinate and return to active growth. Previously, we showed that only spores of FP isolates were able to germinate with K+ ions. We now found that the spores of the majority of FP isolates, but none of the NFB isolates, germinated with the cogerminants Na+ and inorganic phosphate (NaPi) at a pH of ∼6.0. Spores of gerKA-KC and gerAA mutants germinated to a lesser extent and released less dipicolinic acid (DPA) than did wild-type spores with NaPi. Although gerKB spores germinated to a similar extent as wild-type spores with NaPi, their rate of germination was lower. Similarly, gerO and gerO gerQ mutant spores germinated slower and released less DPA than did wild-type spores with NaPi. In contrast, gerQ spores germinated to a slightly lesser extent than wild-type spores but released all of their DPA during NaPi germination. In sum, this study identified NaPi as a novel nutrient germinant for spores of most FP isolates and provided evidence that proteins encoded by the gerKA-KC operon, gerAA, and gerO are required for NaPi-induced spore germination.Clostridium perfringens is a gram-positive, anaerobic, spore-forming, pathogenic bacterium that causes a wide array of gastrointestinal (GI) diseases in both animals and humans (14, 15). However, Clostridium perfringens type A food poisoning (FP) is the most common C. perfringens-associated illness among humans and is currently ranked as the third most commonly reported food-borne disease (14). Mostly type A isolates that produce the C. perfringens enterotoxin have been associated with C. perfringens-related GI illnesses (14). C. perfringens cpe-positive isolates can carry the cpe gene on either the chromosome or a plasmid (3, 4). Interestingly, the majority of C. perfringens type A FP isolates carry a chromosomal copy of the cpe gene, while all non-food-borne (NFB) GI disease isolates carry a plasmid copy of cpe (3, 4, 11, 29). The genetic differences involved in the pathogenesis differences between C. perfringens FP and NFB isolates seem to involve more factors than the simple location of the cpe gene. For example, spores of FP isolates are strikingly more resistant than spores of NFB isolates to heat (100°C) (27), cold (4°C), and freezing (−20°C) temperatures (12) and to chemicals used in food industry settings (13), making FP spores more suited for FP environments. Under favorable environmental conditions, these dormant spores germinate to return to active growth, proliferate to high numbers, and then produce toxins to cause disease (14).Bacterial spores germinate when they sense the presence of nutrients (termed germinants) in the environment through their cognate receptors located in the spore inner membrane (18). For C. perfringens, some nutrients that initiate germination include l-asparagine, KCl, a mixture of l-asparagine and KCl, and a 1:1 chelate of Ca2+ and dipicolinic acid (DPA) (Ca-DPA) (20). The main receptor(s) involved in sensing these compounds is the GerKA and/or GerKC receptor(s), which is required for l-asparagine and Ca-DPA and only partially required for KCl and an l-asparagine-KCl mixture (20, 21). Upon binding of the germinant to its cognate receptor, a variety of biophysical events take place, including the release of monovalent ions (i.e., Na+, K+, and Li+) followed by the release of the spore''s large depot of Ca-DPA (28). In Bacillus subtilis, release of Ca-DPA acts as a signal for activation of the cortex-lytic enzyme CwlJ (17). In contrast, Ca-DPA release from the spore core has no role in triggering cortex hydrolysis during C. perfringens spore germination (19, 22, 23); instead, Ca-DPA induces germination via the GerKA and/or GerKC receptor(s) (20, 21). Degradation of the cortex in both species leads to hydration of the spore core up to levels found in growing bacteria, allowing resumption of enzymatic activity and metabolism, and consequently outgrowth (22, 28).The ability of bacterial spores to sense different nutrients appears to be tightly regulated by their adaptation to different environmental niches. For example, spores of FP isolates, but not NFB isolates, are capable of germinating with KCl (20), an intrinsic mineral of meats that are most commonly associated with FP, suggesting an adaptation of FP isolates to FP environments. In addition, the level of inorganic phosphate (Pi) is also significant in meat products (42 to 60 mM) (USDA [http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=1&tax_subject=242]). Similarly, sodium ions are also present in meats (∼30 mM), especially in processed meat products (∼300 to 400 mM) (USDA). Consequently, in this study we found that Na+ and Pi at ∼100 mM and pH 6.0 are unique cogerminants for spores of C. perfringens type A FP isolates, act through the GerKA and/or GerKC and GerAA receptors, and also require the presence of the putative Na+/K+-H+ antiporter, GerO, for normal germination.  相似文献   

10.
Previous work indicated that Clostridium perfringens gerKA gerKC spores germinate significantly, suggesting that gerKB also has a role in C. perfringens spore germination. We now find that (i) gerKB was expressed only during sporulation, likely in the forespore; (ii) gerKB spores germinated like wild-type spores with nonnutrient germinants and with high concentrations of nutrients but more slowly with low nutrient concentrations; and (iii) gerKB spores had lower colony-forming efficiency and slower outgrowth than wild-type spores. These results suggest that GerKB plays an auxiliary role in spore germination under some conditions and is required for normal spore viability and outgrowth.Spores of Bacillus and Clostridium species can break dormancy upon sensing a variety of compounds (termed germinants), including amino acids, nutrient mixtures, a 1:1 chelate of Ca2+ and pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]), and cationic surfactants such as dodecylamine (20). Nutrient germinants are sensed by their cognate receptors, located in the spore''s inner membrane (6), which are composed of proteins belonging to the GerA family (10, 11). In Bacillus subtilis, three tricistronic operons (gerA, gerB, and gerK) expressed uniquely during sporulation in the developing forespore each encode the three major germinant receptors, with different receptors responding to a different spectrum of nutrient germinants (5, 9, 20). Null mutations in any cistron in a gerA family operon inactivate the function of the respective receptor (9, 11). In contrast, Clostridium perfringens, a gram-positive, spore-forming, anaerobic pathogenic bacterium, has no tricistronic gerA-like operon but only a monocistronic gerAA that is far from a gerK locus. This locus contains a bicistronic gerKA-gerKC operon and a monocistronic gerKB upstream of and in the opposite orientation to gerKA-gerKC (Fig. (Fig.1A)1A) (16). GerAA has an auxiliary role in the germination of C. perfringens spores at low germinant concentrations, while GerKA and/or GerKC are required for l-asparagine germination and have partial roles in germination with KCl and a mixture of KCl and l-asparagine (AK) (16). In contrast to the situation with B. subtilis, where germinant receptors play no role in Ca-DPA germination (12, 13), GerKA and/or GerKC is required for Ca-DPA germination (16). The partial requirement for GerKA and/or GerKC in C. perfringens spore germination by KCl and AK suggests that the upstream gene product, GerKB, might also have some role in KCl and AK germination of C. perfringens spores. Therefore, in this study we have investigated the role of GerKB in the germination and outgrowth of C. perfringens spores.Open in a separate windowFIG. 1.Arrangement and expression of gerKB in C. perfringens SM101. (A) The arrangement of the gerK locus in C. perfringens SM101 is shown, and the locations of the primers used to amplify the upstream regions of the gerKB gene and the putative promoters of gerKB and gerKA are indicated. The gerKB promoter was predicted to be within the intergenic regions between gerKB and the gerK operon. (B) GUS specific activities from the gerKB-gusA fusion in strain SM101(pDP84) grown in TGY vegetative (filled squares) and DS sporulation (open squares) media were determined as described in the text. Data represent averages from three independent experiments with the error bars representing standard deviations, and time zero denotes the time of inoculation of cells into either TGY or DS medium.To determine if gerKB is expressed during sporulation, 485 bp upstream of the gerKB coding sequence, including DNA between gerKB and gerKA, was PCR amplified with primer pair CPP389/CPP391, which had SalI and PstI cleavage sites, respectively (see Table S2 in the supplemental material). The PCR fragment was cloned between SalI and PstI cleavage sites in plasmid pMRS127 (17) to create a gerKB-gusA fusion in plasmid pDP84 (see Table S1 in the supplemental material). This plasmid was introduced into C. perfringens SM101 by electroporation (3), and Emr transformants were selected. The SM101 transformant carrying plasmid pDP84 was grown in TGY vegetative growth medium (3% Trypticase soy, 2% glucose, 1% yeast extract, 0.1% l-cysteine) (7) and in Duncan-Strong (DS) (4) sporulation medium and assayed for β-glucuronidase (GUS) activity as described previously (23). Vegetative cultures of strain SM101 carrying plasmid pMRS127 (empty vector) or pDP84 (gerKB-gusA) exhibited no significant GUS activity, and strain SM101 grown in DS medium also exhibited no significant GUS activity (Fig. (Fig.1B1B and data not shown). However, GUS activity was observed in sporulating cultures of SM101(pDP84) (Fig. (Fig.1B),1B), indicating that a sporulation-specific promoter is located upstream of gerKB. The expression of the gerKB-gusA fusion began ∼3 h after induction of sporulation and reached a maximum after ∼6 h of sporulation (Fig. (Fig.1B).1B). The decrease in GUS activity observed after ∼6 h is consistent with the GerKB-GusA protein being packaged into the dormant spore where it cannot be easily assayed and thus with gerKB being expressed in the forespore compartment of the sporulating cell (8). These results confirm that, as with the gerKA-gerKC operon (16), gerKB is also expressed only during sporulation.To investigate the role of GerKB in C. perfringens spore germination, we constructed a gerKB mutant strain (DPS108) as described previously (14-16). A 2,203-bp DNA fragment carrying 2,080 bp upstream of and 123 bp from the N-terminal coding region of gerKB was PCR amplified using primers CPP369 and CPP367, which had XhoI and BamHI cleavage sites at the 5′ ends of the forward and reverse primers, respectively (see Table S2 in the supplemental material). A 1,329-bp fragment carrying 134 bp from the C-terminal and 1,195 bp downstream of the coding region of gerKB was PCR amplified using primers CPP371 and CPP370, which had BamHI and KpnI cleavage sites at the 5′ ends of the forward and reverse primers, respectively (see Table S2 in the supplemental material). These PCR fragments were cloned into plasmid pCR-XL-TOPO, giving plasmids pDP67 and pDP69, respectively (see Table S1 in the supplemental material). An ∼2.2-kb BamHI-XhoI fragment from pDP67 was cloned into pDP1 (pCR-XL-TOPO carrying an internal fragment of gerAA), giving plasmid pDP68, and an ∼1.4-kb KpnI-BamHI fragment from pDP69 was cloned in pDP68, giving pDP73 (see Table S1 in the supplemental material). The latter plasmid was digested with BamHI, the ends were filled, and an ∼1.3-kb NaeI-SmaI fragment carrying catP from pJIR418 (1) was inserted, giving plasmid pDP74. Finally, an ∼4.8-kb KpnI-XhoI fragment from pDP74 (see Table S1 in the supplemental material) was cloned between the KpnI and SalI sites of pMRS104, giving pDP75, which cannot replicate in C. perfringens. Plasmid pDP75 was introduced into C. perfringens SM101 by electroporation (3), and the gerKB deletion strain DPS108 was isolated as described previously (18). The presence of the gerKB deletion in strain DPS108 was confirmed by PCR and Southern blot analyses (data not shown). Strain DPS108 gave ∼70% sporulating cells in DS sporulation medium, similar to results with the wild-type strain, SM101 (data not shown).Having obtained evidence for successful construction of the gerKB mutant, we compared the germinations of heat-activated (80°C; 10 min) gerKB and wild-type spores as previously described (16). Both the gerKB and wild-type spores germinated identically and nearly completely in 60 min at 40°C in brain heart infusion (BHI) broth as determined by the fall in optical density at 600 nm (OD600) of germinating cultures and phase-contrast microscopy (data not shown). This result suggests that GerKB plays no essential role in spore germination in rich medium. The role of GerKB in C. perfringens spore germination was also assessed with individual germinants identified previously (16). Heat-activated wild-type and gerKB spores germinated similarly with high (100 mM) concentrations of KCl, l-asparagine, and AK, all in 25 mM sodium phosphate (pH 7.0), and in 50 mM Ca-DPA adjusted to pH 8.0 with Tris base (Fig. 2A to D). These results were also confirmed by phase-contrast microscopy (data not shown). However, with lower (10 to 20 mM) concentrations of KCl, l-asparagine, and AK, gerKB spore germination was very slightly (Fig. (Fig.2A)2A) to significantly (Fig. 2B and C) slower than that of wild-type spores. These results suggest that while GerKB is not essential for germination with high concentrations of KCl, l-asparagine, or AK, it plays a significant role in germination with low l-asparagine and AK concentrations and, further, that GerKB is not required for Ca-DPA germination. This latter finding is similar to the situation with B. subtilis spores where germinant receptors play no role in Ca-DPA germination (19, 20). However, in C. perfringens spores, GerKA and/or GerKC do play a significant role in Ca-DPA germination (16).Open in a separate windowFIG. 2.Germination of spores of C. perfringens strains with various germinants. Heat-activated spores of strains SM101 (wild type) (filled symbols) and DPS108 (gerKB) (open symbols) were incubated at an OD600 of 1 at 40°C with high (squares) and low (triangles) germinant concentrations of 100 and 10 mM KCl (A), 100 and 20 mM l-asparagine (B), 100 and 10 mM AK (C), and 50 mM Ca-DPA (D) as described in the text, and at various times the OD600 was measured. No significant germination was observed when heat-activated spores of SM101 and DPS108 were incubated for 60 min at 40°C in 25 mM sodium phosphate buffer (pH 7.0) (data not shown). The data shown are averages from duplicate determinations with two different spore preparations, and error bars represent standard deviations.Bacterial spores can also germinate with dodecylamine, a cationic surfactant (19). In B. subtilis spores, dodecylamine induces germination most likely by opening channels composed, at least in part, of SpoVA proteins (22), allowing release of the spores'' Ca-DPA (19). Spores of B. subtilis lacking all three functional germinant receptors release DPA, as do wild-type spores, upon incubation with dodecylamine (19), while C. perfringens spores lacking GerKA-GerKC incubated with dodecylamine release DPA slower than wild-type spores (16). However, when C. perfringens gerKB spores at an OD600 of 1.5 were incubated with 1 mM dodecylamine in Tris-HCl (pH 7.4) at 60°C (2, 16), gerKB spores released their DPA slightly faster than wild-type spores (Fig. (Fig.3)3) when DPA release was measured as described previously (16). These results suggest that GerKB has no role in dodecylamine germination.Open in a separate windowFIG. 3.Germination of spores of C. perfringens strains with dodecylamine. Spores of strains SM101 (wild type) (filled squares) and DPS108 (gerKB) (open squares) were germinated with dodecylamine, and germination was monitored by measuring DPA release as described in the text. There was no significant DPA release in 60 min by spores incubated similarly but without dodecylamine (data not shown). Error bars represent standard deviations.Previous work (16) found that C. perfringens spores lacking GerKA-GerKC had lower viability than wild-type spores on rich medium plates, and it was thus of interest to determine gerKB spore viability, which was measured as previously described (14, 16). Strikingly, the colony-forming ability of gerKB spores was ∼7-fold lower (P < 0.01) than that of wild-type spores after 24 h on BHI plates (Table (Table1),1), and no additional colonies appeared when plates were incubated for up to 3 days (data not shown). The colony-forming ability of spores lacking GerKA and GerKC determined in parallel was ∼12-fold lower than that of wild-type spores (Table (Table1).1). Phase-contrast microscopy of C. perfringens spores incubated in BHI broth for 24 h under aerobic conditions to prevent vegetative cell growth indicated that >90% of wild-type spores not only had germinated but had also released the nascent vegetative cell, while >85% of gerKA gerKC and gerKB spores remained as only phase-dark germinated spores with no evidence of nascent cell release (data not shown), as found previously with gerKA gerKC spores (16). The fact that >85% of gerKB spores germinated in BHI medium in 24 h but most of these germinated spores did not progress further in development strongly suggests that GerKB is needed for normal spore outgrowth (and see below) as well as for normal spore germination.

TABLE 1.

Colony formation by spores of C. perfringens strainsa
Strain (genotype)Spore titer (CFU/ml/OD600)b
BHIBHI + Ca-DPAcBHI + Lyzd
SM101 (wild type)3.1 × 1073.3 × 1073.9 × 107
DPS101 (gerKA gerKC)2.6 × 1063.5 × 1062.0 × 106
DPS108 (gerKB)4.4 × 1064.2 × 1068.6 × 106
Open in a separate windowaHeat-activated spores of various strains were plated on BHI agar, and colonies were counted after anaerobic incubation at 37°C for 24 h.bTiters are the average number of CFU/ml/OD600 determined in three experiments, and the variance was less than 15%.cHeat-activated spores were preincubated with Ca-DPA as described in the text and plated on BHI plates.dSpores were decoated, heat activated, and plated on BHI agar containing lysozyme (Lyz), and colonies were counted after anaerobic incubation at 37°C for 24 h.To evaluate whether preincubation with Ca-DPA could rescue apparently inviable gerKB spores via activation of GerKA and/or GerKC (16), C. perfringens spores of the wild-type and various gerK strains were heat activated, cooled, and incubated in 50 mM Ca-DPA (made to pH 8.0 with Tris base) for 20 min at 40°C, plated on BHI medium agar plates with or without lysozyme, and counted after anaerobic incubation at 37°C for 24 h. The preincubation of mutant spores with Ca-DPA gave no significant increase in colony-forming efficiency (Table (Table1).1). To test whether spores with a lesion in either gerKB or the gerKA-gerKC operon could be recovered by digestion of the spore''s peptidoglycan cortex, spores of various strains were decoated in 1 ml of 0.1 M sodium borate (pH 10)-2% 2-mercaptoethanol for 60 min at 37°C, washed at least nine times with sterile distilled water (14), and plated on BHI plates containing lysozyme (1 μg/ml). While the viability of gerKA gerKC spores remained ∼12-fold lower than that of wild-type spores, gerKB spores'' viability increased slightly but was still ∼5-fold lower than that of wild-type spores (Table (Table11).The results given above suggest that GerKB is essential not only for normal spore germination but also for normal spore viability and outgrowth. To further examine if GerKB is involved in spore outgrowth, heat-activated spores of DPS108 (gerKB) and SM101 (wild-type) strains were inoculated into 10 ml TGY broth to a final OD600 of 0.110 and 0.015 (one-seventh that of the gerKB spores), respectively, and incubated anaerobically at 37°C, and at various times the OD600 was measured. Although the initial wild-type spores were diluted to one-seventh the OD600 of gerKB spores to correct for the gerKB spores'' lower viability, the wild-type spores'' outgrowth was much faster than that of the gerKB spores (Fig. (Fig.4),4), suggesting that GerKB is essential not only for normal spore germination and viability but also for normal spore outgrowth, since the growth rates of wild-type and gerKB cells are identical (data not shown). The difference in rates of outgrowth of wild-type and gerKB spores was even greater when the initial spores were at the same starting OD600 (data not shown).Open in a separate windowFIG. 4.Outgrowth of spores of C. perfringens strains. Heat-activated spores of strains DPS108 (gerKB) (filled squares) and SM101 (wild type) (open squares) were incubated anaerobically in TGY broth at an initial OD600 of 0.110 and 0.015, respectively, and the OD600 of the cultures was measured. Error bars represent standard deviations.The lack of effect of lysozyme on the viability of decoated gerKB (or gerKA gerKC) spores indicates that the defect in these spores is not the inability to degrade cortex peptidoglycan, since exogenous lysozyme restores viability to decoated C. perfringens spores that lack the essential cortex-lytic enzyme SleC (15). Indeed, gerKB spores degraded cortex peptidoglycan normally during spore germination with KCl (data not shown). The loss of GerKB (and perhaps GerKA and/or GerKC [16]) also slowed spore outgrowth noticeably. Some of this effect may be due to the low viability of the mutant spores, as the viability defect in these spores could manifest itself in spore outgrowth (and see below). However, when differences in spore viability were corrected for, gerKB spores still went through spore outgrowth more slowly than wild-type spores. The latter two findings are again different than the situation with B. subtilis spores, as while B. subtilis spores lacking known germinant receptors show low apparent viability on nutrient plates, the viability of these spores can be restored to almost that of wild-type spores by preincubation with Ca-DPA (12, 13).The more novel conclusions from this work concern the role of GerKB in spore germination. GerKB is the only evident C. perfringens homolog of B proteins encoded by gerA operon homologs, and in B. subtilis, loss of the B protein from a GerA-type receptor eliminates the function of that receptor (20). One would therefore predict, based on the B. subtilis model, that loss of GerKB would largely eliminate C. perfringens spore germination. However, this was certainly not the case. There appear to be a number of possible explanations for the marked difference in the germination behaviors of spores of these two genera. First, the various GerA family proteins in C. perfringens spores may be able to function independently of each other, as opposed to the situation with B. subtilis spores. Second, it is possible that there are additional gerA family genes in the C. perfringens genome that encode proteins sufficiently different in sequence such that they are not detected by sequence alignment programs. However, use of the C. perfringens gerA family genes as query sequences also does not detect additional gerA family members (data not shown). Third, perhaps there is a radically different mechanism than activation of germinant receptors for triggering germination of C. perfringens spores. There is of course no evidence for this. However, recent work has identified a novel mechanism for triggering germination of spores of Bacillus species that does not involve the germinant receptors (21), and perhaps C. perfringens has a novel germination mechanism as well. At present we cannot decide definitively between these possible explanations. However, deletion of all known gerA family genes from C. perfringens and examination of the germination of these multiply deficient spores would certainly help in deciding between these possibilities.  相似文献   

11.
Summary A method for the isolation and determination of small numbers of vegetative cells or spores of Clostridium perfringen has been developed based on enrichment under anaerobic conditions in a fluid thioglycollate medium without dextrose, containing 400 g of D-cycloserine/ml at 46°C for 18 h (PEM). It allows virtually complete recovery of vegetative cells of all strains of Clostridium perfringens tested, whereas facultative anaerobes present in food are inhibited. Undamaged Clostridium perfringens spores can also be detected by this procedure. After enrichment, isolation of Clostriduum perfringens is carried out on iron sulphite agar at 46°C for 18 h. Typical black colonies are picked and confirmed by the following tests: neutralization of the -toxin by a specific diagnostic antiserum and absence of indole, motility, and ability to liquify gelatin.  相似文献   

12.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

13.
Superdormant spores of Bacillus subtilis and Bacillus megaterium were isolated in 4 to 12% yields following germination with high nutrient levels that activated one or two germinant receptors. These superdormant spores did not germinate with the initial nutrients or those that stimulated other germinant receptors, and the superdormant spores'' defect was not genetic. The superdormant spores did, however, germinate with Ca2+-dipicolinic acid or dodecylamine. Although these superdormant spores did not germinate with high levels of nutrients that activated one or two nutrient germinant receptors, they germinated with nutrient mixtures that activated more receptors, and using high levels of nutrient mixtures activating more germinant receptors decreased superdormant spore yields. The use of moderate nutrient levels to isolate superdormant spores increased their yields; the resultant spores germinated poorly with the initial moderate nutrient concentrations, but they germinated well with high nutrient concentrations. These findings suggest that the levels of superdormant spores in populations depend on the germination conditions used, with fewer superdormant spores isolated when better germination conditions are used. These findings further suggest that superdormant spores require an increased signal for triggering spore germination compared to most spores in populations. One factor determining whether a spore is superdormant is its level of germinant receptors, since spore populations with higher levels of germinant receptors yielded lower levels of superdormant spores. A second important factor may be heat activation of spore populations, since yields of superdormant spores from non-heat-activated spore populations were higher than those from optimally activated spores.Spores of various Bacillus species are formed in sporulation and are metabolically dormant and very resistant to environmental stress factors (21, 37). While such spores can remain in this dormant, resistant state for long periods, they can return to life rapidly through the process of germination, during which the spore''s dormancy and extreme resistance are lost (36). Spore germination has long been of intrinsic interest, and continues to attract applied interest, because (i) spores of a number of Bacillus species are major agents of food spoilage and food-borne disease and (ii) spores of Bacillus anthracis are a major bioterrorism agent. Since spores are much easier to kill after they have germinated, it would be advantageous to trigger germination of spores in foods or the environment and then readily inactivate the much less resistant germinated spores. However, this simple strategy has been largely nullified because germination of spore populations is heterogeneous, with some spores, often called superdormant spores, germinating extremely slowly and potentially coming back to life long after treatments are applied to inactivate germinated spores (8, 9, 16). The concern over superdormant spores in populations also affects decisions such as how long individuals exposed to B. anthracis spores should continue to take antibiotics, since spores could remain dormant in an individual for long periods and then germinate and cause disease (3, 11).In many species, spore germination can be increased by a prior activation step, generally a sublethal heat treatment, although the changes taking place during heat activation are not known (16). Spore germination in Bacillus species is normally triggered by nutrients such as glucose, amino acids, or purine ribosides (27, 36). These agents bind to germinant receptors located in the spore''s inner membrane that are specific for particular nutrients. In Bacillus subtilis, the GerA receptor responds to l-alanine or l-valine, while the GerB and GerK receptors act cooperatively to respond to a mixture of l-asparagine (or l-alanine), d-glucose, d-fructose and K+ ions (AGFK [or Ala-GFK]) (1, 27, 36). There are even more functional germinant receptors in Bacillus megaterium spores, and these respond to d-glucose, l-proline, l-leucine, l-valine, or even salts, such as KBr (6). Glucose appears to trigger germination of B. megaterium spores through either of two germinant receptors, GerU or GerVB, while l-proline triggers germination through only the GerVB receptor, and KBr germination is greatly decreased by the loss of either GerU or GerVB (6). Nutrient binding to the germinant receptors triggers the release of small molecules from the spore core, most notably the huge depot (∼10% of spore dry weight) of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) present in spores predominantly as a 1:1 diluted chelate with Ca2+ (Ca-DPA) (35, 36). Ca-DPA release then triggers the activation of one of two redundant cortex lytic enzymes (CLEs) that degrade the spore''s peptidoglycan cortex, and cortex degradation completes spore germination and allows progression into outgrowth and then vegetative growth (27, 33, 36).Spore germination can also be triggered by nonnutrient agents, including Ca-DPA and cationic surfactants (27, 33, 36). With B. subtilis spores, Ca-DPA triggers germination by activating one particular CLE, termed CwlJ, and bypasses the spore''s germinant receptors. Germination by the cationic surfactant dodecylamine also bypasses the germinant receptors, and this agent appears to release small molecules including Ca-DPA from the spore core either by opening a normal channel in the spore''s inner membrane for Ca-DPA and other small molecules or by creating such a channel (31, 38, 39).Almost all work on the specifics of the germination of spores of Bacillus species has focused on the majority of spores in populations, and little detailed attention has been paid to that minority of spores that either fail to germinate or germinate extremely slowly. However, it is these latter spores that are most important in unraveling the cause of superdormancy and perhaps suggesting a means to germinate and thus easily inactivate such superdormant spores. Consequently, we have undertaken the task of isolating superdormant spores from spore populations, using buoyant density centrifugation to separate dormant spores from germinated spores. The properties of these purified superdormant spores were then studied, and this information has suggested some reason(s) for spore superdormancy.  相似文献   

14.
Summary Spores of heterothallic diploid cells of Saccharomyces cerevisiae had neither a nor agglutination substance in either cell wall or cytoplasmic fraction; they, however, showed selfagglutination not caused by sex-specific agglutination substances. Meanwhile, practically no sexual agglutination was detected during germination and outgrowth of the spores; it arose after emergence of the first buds and progressed with incubation time. Its ability increased gradualy until the first bud emergence and rapidly thereafter. a and agglutination substances were detected in both cell wall and cytoplasmic fractions of cells from an 8h-old spore culture. Only germinated spores with buds had the ability to produce and to respond to the a pheromone.  相似文献   

15.

Background

The first step of the bacterial lifecycle is the germination of bacterial spores into their vegetative form, which requires the presence of specific nutrients. In contrast to closely related Bacillus anthracis spores, Bacillus cereus spores germinate in the presence of a single germinant, inosine, yet with a significant lag period.

Methods and Findings

We found that the initial lag period of inosine-treated germination of B. cereus spores disappeared in the presence of supernatants derived from already germinated spores. The lag period also dissipated when inosine was supplemented with the co-germinator alanine. In fact, HPLC-based analysis revealed the presence of amino acids in the supernatant of germinated B. cereus spores. The released amino acids included alanine in concentrations sufficient to promote rapid germination of inosine-treated spores. The alanine racemase inhibitor D-cycloserine enhanced germination of B. cereus spores, presumably by increasing the L-alanine concentration in the supernatant. Moreover, we found that B. cereus spores lacking the germination receptors gerI and gerQ did not germinate and release amino acids in the presence of inosine. These mutant spores, however, germinated efficiently when inosine was supplemented with alanine. Finally, removal of released amino acids in a washout experiment abrogated inosine-mediated germination of B. cereus spores.

Conclusions

We found that the single germinant inosine is able to trigger a two-tier mechanism for inosine-mediated germination of B. cereus spores: Inosine mediates the release of alanine, an essential step to complete the germination process. Therefore, B. cereus spores appear to have developed a unique quorum-sensing feedback mechanism to monitor spore density and to coordinate germination.  相似文献   

16.
Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores'' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores'' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores'' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.  相似文献   

17.
Aims: To determine the mechanism of wet heat killing of spores of Bacillus cereus and Bacillus megaterium. Methods and Results: Bacillus cereus and B. megaterium spores wet heat‐killed 82–99% gave two bands on equilibrium density gradient centrifugation. The lighter band was absent from spores that were not heat‐treated and increased in intensity upon increased heating times. These spores lacked dipicolinic acid (DPA) were not viable, germinated minimally and had much denatured protein. The spores in the denser band had viabilities as low as 2% of starting spores but retained normal DPA levels and most germinated, albeit slowly. However, these largely dead spores outgrew poorly if at all and synthesized little or no ATP following germination. Conclusions: Wet heat treatment appears to kill spores of B. cereus and B. megaterium by denaturing one or more key proteins, as has been suggested for wet heat killing of Bacillus subtilis spores. Significance and Impact of the Study: This work provides further information on the mechanisms of killing of spores of Bacillus species by wet heat, the most common method for spore inactivation.  相似文献   

18.
Superdormant spores of Bacillus cereus and Bacillus subtilis germinated just as well as dormant spores with pressures of 150 or 500 MPa and with or without heat activation. Superdormant B. subtilis spores also germinated as well as dormant spores with peptidoglycan fragments or bryostatin, a Ser/Thr protein kinase activator.Spores of Bacillus species are formed in sporulation, a process that is generally triggered by starvation for one or more nutrients (13, 19). These spores are metabolically dormant and extremely resistant to a large variety of environmental stresses, including heat, radiation, and toxic chemicals, and as a consequence of these properties, these spores can remain viable in their dormant state for many years (13, 18, 19). However, spores are constantly sensing their environment, and if nutrients return, the spores can rapidly return to growth through the process of spore germination (17). Spore germination is generally triggered by specific nutrients that bind to nutrient germinant receptors, with this binding alone somehow triggering germination. However, spore germination can also be triggered by many non-nutrient agents, including cationic surfactants such as dodecylamine, a 1:1 complex of Ca2+ with pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA], a major spore small molecule), very high pressures, specific peptidoglycan fragments, and bryostatin, an activator of Ser/Thr protein kinases (17, 19, 20). For nutrient germinants in particular, spore germination is also potentiated by a prior sublethal heat treatment termed heat activation (17).While normally the great majority of spores in populations germinate relatively rapidly in response to nutrient germinants, a small percentage of spores germinate extremely slowly. These spores that are refractory to nutrient germination have been termed superdormant spores and are a major concern for the food industry (8). Recently superdormant spores of three Bacillus species have been isolated by repeated germination of spore populations with specific nutrient germinants and isolation of remaining dormant spores (5, 6). These superdormant spores germinate extremely poorly with the nutrient germinants used in superdormant spore isolation, as well as with other nutrient germinants. All of the specific defects leading to spore superdormancy are not known, although an increased level of receptors for specific nutrient germinants decreases levels of superdormant spores obtained with the nutrients that are ligands for these receptors (5). Superdormant spores also have significantly higher temperature optima for heat activation of nutrient germination than the spore population as a whole (7).In contrast to the poor germination of superdormant spores with nutrient germinants, superdormant spores germinate normally with dodecylamine and Ca-DPA (5, 6). This is consistent with possible roles of nutrient germinant receptor levels and/or heat activation temperature optima in affecting spore superdormancy, since neither dodecylamine nor Ca-DPA triggers Bacillus spore germination through nutrient germinant receptors, and germination with these agents is also not stimulated by heat activation (11, 15, 17). However, the effects of high pressures, peptidoglycan fragments, and bryostatin, all of which almost certainly trigger spore germination by mechanisms at least somewhat different than triggering of germination by nutrients, dodecylamine, and Ca-DPA (2, 3, 11, 15, 20, 22, 23), have not been tested for their effects on superdormant spores. Consequently, we have compared the germination of dormant and superdormant spores of two Bacillus species by high-pressures, peptidoglycan fragments, and bryostatin.The spores used in this work were from Bacillus subtilis PS533 (16), a derivative of strain 168 that also carries plasmid pUB110, providing resistance to kanamycin (10 μg/ml), and Bacillus cereus T (originally obtained from H. O. Halvorson). Spores of these strains were prepared and purified as described previously (6, 10, 12). Superdormant spores of B. subtilis were prepared by germination following heat activation at 75°C for 30 min by two germination treatments at 37°C with 10 mM l-valine for 2 h, followed by isolation of remaining dormant spores, all as described previously (5, 10, 12). These superdormant spores germinated extremely poorly with 10 mM valine at 37°C, giving ≤10% germination in 2 h at 37°C, while the initial spore population exhibited >95% germination under the same conditions (data not shown). Superdormant B. cereus spores were isolated similarly, although heat activation was at 65°C for 30 min and the germinant was 5 mM inosine as described previously (6). These superdormant B. cereus spores exhibited <5% germination with inosine in 2 h at 37°C compared to the >95% germination of the initial dormant spores under the same conditions (data not shown).  相似文献   

19.
The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.  相似文献   

20.
Spore germination in streptomycetes was shown to be stimulated by exogenously added A-factor. Agar medium either containing or not containing A-factor was inoculated with spore suspensions of three strains differing in their ability to produce regulators of the A-factor group: Streptomyces griseus 773, which produces A-factor and two its lower homologs; S. coelicolor A3(2), which forms six Acl-factors (A-factor analogues); and S. avermitilis JCM5070, which fails to form regulators of this group. A count of the grown colonies showed that exogenous A-factor stimulated spore germination in strains that were themselves able to synthesize regulators of the A-factor group. In S. griseus 773, the number of germinated spores increased by 67% on average after the addition of A-factor to the medium in an amount of 10 g/ml. In strain S. coelicolor A3 (2), the number of germinated spores increased by 75% after the addition of 1 g/ml of A-factor. During germination of the S. avermitilis JCM5070 spores, no changes in the CFU number was observed after the addition of A-factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号