首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth.  相似文献   

2.
The effect of tungsten (W) and molybdenum (Mo) on the growth of Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied in syntrophic cultures and the pure cultures of both the organisms. Cells that were grown syntropically were separated by Percoll density centrifugation. Measurement of hydrogenase and formate dehydrogenase levels in cell extracts of syntrophically grown cells correlated with the methane formation rates in the co-cultures. The effect of W and Mo on the activity of formate dehydrogenase was considerable in both the organisms, whereas hydrogenase activity remained relatively constant. Depletion of tungsten and/or molybdenum, however, did not affect the growth of the pure culture of S. fumaroxidans on propionate plus fumarate significantly, although the specific activities of hydrogenase and especially formate dehydrogenase were influenced by the absence of Mo and W. This indicates that the organism has a low W or Mo requirement under these conditions. Growth of M. hungatei on either formate or H2/CO2 required tungsten, and molybdenum could replace tungsten to some extent. Our results suggest a more prominent role for H2 as electron carrier in the syntrophic conversion of propionate, when the essential trace metals W and Mo for the functioning of formate dehydrogenase are depleted.  相似文献   

3.
4.
The hydrogenase and formate dehydrogenase levels in Syntrophobacter fumaroxidans and Methanospirillum hungatei were studied in syntrophic propionate-oxidizing cultures and compared to the levels in axenic cultures of both organisms. Cells grown syntrophically were separated from each other by Percoll gradient centrifugation. In S. fumaroxidans both formate dehydrogenase and hydrogenase levels were highest in cells which were grown syntrophically, while the formate-H2 lyase activities were comparable under the conditions tested. In M. hungatei the formate dehydrogenase and formate-H2 lyase levels were highest in cells grown syntrophically, while the hydrogenase levels in syntrophically grown cells were comparable to those in cells grown on formate. Reconstituted syntrophic cultures from axenic cultures immediately resumed syntrophic growth, and the calculated growth rates of these cultures were highest for cells which were inoculated from the axenic S. fumaroxidans cultures that exhibited the highest formate dehydrogenase activities. The results suggest that formate is the preferred electron carrier in syntrophic propionate-oxidizing cocultures of S. fumaroxidans and M. hungatei.  相似文献   

5.
The syntrophic propionate-oxidizing bacterium Syntrophobacter fumaroxidans possesses two distinct formate dehydrogenases and at least three distinct hydrogenases. All of these reductases are either loosely membrane-associated or soluble proteins and at least one of the hydrogenases is located in the periplasm. These enzymes were expressed on all growth substrates tested, though the levels of each enzyme showed large variations. These findings suggest that both H2 and formate are involved in the central metabolism of the organism, and that both these compounds may serve as interspecies electron carriers during syntrophic growth on propionate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
7.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i.e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction. Received: 18 March 1997 / Accepted: 10 November 1997  相似文献   

8.
9.
Methanococcus maripaludis, an H2- and formate-utilizing methanogen, produced H2 at high rates from formate. The rates and kinetics of H2 production depended upon the growth conditions, and H2 availability during growth was a major factor. Specific activities of resting cells grown with formate or H2 were 0.4 to 1.4 U·mg−1 (dry weight). H2 production in formate-grown cells followed Michaelis-Menten kinetics, and the concentration of formate required for half-maximal activity (Kf) was 3.6 mM. In contrast, in H2-grown cells this process followed sigmoidal kinetics, and the Kf was 9 mM. A key enzyme for formate-dependent H2 production was formate dehydrogenase, Fdh. H2 production and growth were severely reduced in a mutant containing a deletion of the gene encoding the Fdh1 isozyme, indicating that it was the primary Fdh. In contrast, a mutant containing a deletion of the gene encoding the Fdh2 isozyme possessed near-wild-type activities, indicating that this isozyme did not play a major role. H2 production by a mutant containing a deletion of the coenzyme F420-reducing hydrogenase Fru was also severely reduced, suggesting that the major pathway of H2 production comprised Fdh1 and Fru. Because a Δfrufrc mutant retained 10% of the wild-type activity, an additional pathway is present. Mutants possessing deletions of the gene encoding the F420-dependent methylene-H4MTP dehydrogenase (Mtd) or the H2-forming methylene-H4MTP dehydrogenase (Hmd) also possessed reduced activity, which suggested that this second pathway was comprised of Fdh1-Mtd-Hmd. In contrast to H2 production, the cellular rates of methanogenesis were unaffected in these mutants, which suggested that the observed H2 production was not a direct intermediate of methanogenesis. In conclusion, high rates of formate-dependent H2 production demonstrated the potential of M. maripaludis for the microbial production of H2 from formate.  相似文献   

10.
Propionate consumption was studied in syntrophic batch and chemostat cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. The Gibbs free energy available for the H2-consuming methanogens was <−20 kJ mol of CH4−1 and thus allowed the synthesis of 1/3 mol of ATP per reaction. The Gibbs free energy available for the propionate oxidizer, on the other hand, was usually >−10 kJ mol of propionate−1. Nevertheless, the syntrophic coculture grew in the chemostat at steady-state rates of 0.04 to 0.07 day−1 and produced maximum biomass yields of 2.6 g mol of propionate−1 and 7.6 g mol of CH4−1 for S. fumaroxidans and M. hungatei, respectively. The energy efficiency for syntrophic growth of S. fumaroxidans, i.e., the biomass produced per unit of available Gibbs free energy was comparable to a theoretical growth yield of 5 to 12 g mol of ATP−1. However, a lower growth efficiency was observed when sulfate served as an additional electron acceptor, suggesting inefficient energy conservation in the presence of sulfate. The maintenance Gibbs free energy determined from the maintenance coefficient of syntrophically grown S. fumaroxidans was surprisingly low (0.14 kJ h−1 mol of biomass C−1) compared to the theoretical value. On the other hand, the Gibbs free-energy dissipation per mole of biomass C produced was much higher than expected. We conclude that the small Gibbs free energy available in many methanogenic environments is sufficient for syntrophic propionate oxidizers to survive on a Gibbs free energy that is much lower than that theoretically predicted.  相似文献   

11.
The hydrogenases and formate dehydrogenases ofEscherichia coli   总被引:2,自引:0,他引:2  
Escherichia coli has the capacity to synthesise three distinct formate dehydrogenase isoenzymes and three hydrogenase isoenzymes. All six are multisubunit, membrane-associated proteins that are functional in the anaerobic metabolism of the organism. One of the formate dehydrogenase isoenzymes is also synthesised in aerobic cells. Two of the formate dehydrogenase enzymes and two hydrogenases have a respiratory function while the formate dehydrogenase and hydrogenase associated with the formate hydrogenlyase pathway are not involved in energy conservation. The three formate dehydrogenases are molybdo-selenoproteins while the three hydrogenases are nickel enzymes; all six enzymes have an abundance of iron-sulfur clusters. These metal requirements alone invoke the necessity for a profusion of ancillary enzymes which are involved in the preparation and incorporation of these cofactors. The characterisation of a large number of pleiotropic mutants unable to synthesise either functionally active formate dehydrogenases or hydrogenases has led to the identification of a number of these enzymes. However, it is apparent that there are many more accessory proteins involved in the biosynthesis of these isoenzymes than originally anticipated. The biochemical function of the vast majority of these enzymes is not understood. Nevertheless, through the construction and study of defined mutants, together with sequence comparisons with homologous proteins from other organisms, it has been possible at least to categorise them with regard to a general requirement for the biosynthesis of all three isoenzymes or whether they have a specific function in the assembly of a particular enzyme. The identification of the structural genes encoding the formate dehydrogenase and hydrogenase isoenzymes has enabled a detailed dissection of how their expression is coordinated to the metabolic requirement for their products. Slowly, a picture is emerging of the extremely complex and involved path of events leading to the regulated synthesis, processing and assembly of catalytically active formate dehydrogenase and hydrogenase isoenzymes. This article aims to review the current state of knowledge regarding the biochemistry, genetics, molecular biology and physiology of these enzymes.  相似文献   

12.
The ultrastructural locations of the coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase of Methanobacterium formicicum were determined using immunogold labeling of thin-sectioned, Lowicryl-embedded cells. Both enzymes were located predominantly at the cell membrane. Whole cells displayed minimal F420-dependent formate dehydrogenase activity or F420-dependent hydrogenase activity, and little activity was released upon osmotic shock treatment, suggesting that these enzymes are not soluble periplasmic proteins. Analysis of the deduced amino acid sequences of the formate dehydrogenase subunits revealed no hydrophobic regions that could qualify as putative membrane-spanning domains.Abbreviation PBST Phosphate-buffered saline containing 0.1% (v/v) Triton X-100  相似文献   

13.
Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate‐reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME‐1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82–90% of a composite ANME‐1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME‐1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron‐accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]‐hydrogenases are lacking in the dataset, genes for an [FeFe]‐hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c‐type cytochromes were identified, which have not yet been correlated with methanogenesis‐related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME‐1 to the bacterial sulfate‐reducing partner.  相似文献   

14.
Heterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H2/sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F420-nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with gxyz = 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H2 this signal was no longer detectable.  相似文献   

15.
Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C–H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.  相似文献   

16.
Growth of Desulfotomaculum orientis, D. ruminis, D. nigrificans and the Desulfotomaculum strains TEP, TWC and TWP, that were newly isolated with sulfate and fatty acids, was studied using defined mineral media. Four of these strains grew with hydrogen plus sulfate as the only energy source. Under these conditions the growth yield of D. orientis in batch culture was 7.5 g cell dry mass per mol sulfate reduced. Growth on methanol with growth yields of about 6 g cell dry mass per mol sulfate was obtained with D. orientis and strain TEP. All strains tested grew slowly with formate as electron donor. Fatty acids from propionate to palmitate were utilized by the strains TEP, TWC and TWP. D. orientis and the strains TEP and TWC were able to utilize the methoxyl groups of trimethoxybenzoate for growth. D. orientis was found to grow chemoautotrophically with hydrogen, carbon dioxide and sulfate; during growth with C1-compounds no additional organic carbon source was required. Furthermore, D. orientis was able to grow slowly in sulfate-free medium with formate, methanol, ethanol lactate, pyruvate or trimethoxybenzoate. Under these conditions acetate was excreted, indicating the function of carbon dioxide as electron acceptor in a homoacetogenic process. A growth-promoting effect of pyrophosphate added to the medium of Desulfotomaculum species was not observed. The results show a high catabolic and anabolic versatility among Desulfotomaculum species, and indicate that electron transport to sulfate can be the sole energy conserving process in this genus.  相似文献   

17.
A new genus and species of a nonmotile gram-negative rod, Syntrophobacter wolinii, is the first bacterium described which degrades propionate only in coculture with an H2-using organism and in the absence of light or exogenous electron acceptors such as O2, sulfate, or nitrate. It was isolated from methanogenic enrichments from an anaerobic municipal sewage digestor, using anaerobic roll tubes containing a medium with propionate as the energy source in association with an H2-using, sulfate-reducing Desulfovibrio sp. which cannot utilize fatty acids other than formate. S. wolinii produced acetate and, presumably, CO2 and H2 (or formate) from propionate. In media without sulfate and with Methanospirillum hungatei, a methanogen that uses only H2-CO2 or formate as an energy source, acetate, methane, and, presumably, CO2 were produced from propionate and only small amounts of Desulfovibrio sp. were present. Isolation in coculture with the methanogen was not successful. S. wolinii does not use other saturated fatty acids as energy sources.  相似文献   

18.
Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1,4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism.  相似文献   

19.
Summary The ntrA gene product, required for expression of genes involved in nitrogen fixation (nif) and regulation (ntr), was shown to be necessary for the expression of the two enzymes of the anaerobically inducible formate hydrogenlyase (FHL) pathway, formate dehydrogenase (FDHH) and hydrogenase isoenzyme 3. Consistent with this finding, the gene encoding the selenopolypeptide (fdhF) of FDHH was shown to have a nif consensus promoter. The levels of six other anaerobically inducible enzymes were examined and found to be ntrA independent. Significantly, these latter six enzymes are dependent upon the fnr gene product for their expression while FDHH and hydrogenase 3 are fnr independent. These findings indicate that there are at least two classes of anaerobically regulated promoters: one class which is ntrA dependent and fnr independent and a second class which is fnr dependent and ntrA independent.  相似文献   

20.
Escherichia coli synthesizes three selenocysteine-dependent formate dehydrogenases (Fdh) that also have a molybdenum cofactor. Fdh-H couples formate oxidation with proton reduction in the formate hydrogenlyase (FHL) complex. The activity of Fdh-H in solution can be measured with artificial redox dyes but, unlike Fdh-O and Fdh-N, it has never been observed by chromogenic activity staining after non-denaturing polyacrylamide gel electrophoresis (PAGE). Here, we demonstrate that Fdh-H activity is present in extracts of cells from stationary phase cultures and forms a single, fast-migrating species. The activity is oxygen labile during electrophoresis explaining why it has not been previously observed as a discreet activity band. The appearance of Fdh-H activity was dependent on an active selenocysteine incorporation system, but was independent of the [NiFe]-hydrogenases (Hyd), 1, 2 or 3. We also identified new active complexes of Fdh-N and Fdh-O during fermentative growth. The findings of this study indicate that Fdh-H does not form a strong complex with other Fdh or Hyd enzymes, which is in line with it being able to deliver electrons to more than one redox-active enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号