首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterocapsa circularisquama is a harmful dinoflagellate whose first bloom in Hiroshima Bay, Japan, appeared in 1992. As suggested by the authors’ group, in the Seto Inland Sea including Hiroshima Bay, oligotrophication particularly the reduction of phosphate starting 1980 is severe. The bloom caused serious damage to the bay's extensive oyster culture. In the present study, the uptake kinetics of nitrate, ammonia, and phosphate by this species were experimentally investigated. The maximum uptake rate (ρmax) and the half‐saturation constant (Ks) were 0.41 pmol cell?1 h?1 and 4.45 μM, respectively, for nitrate, 2.02 pmol cell?1 h?1 and 11.1 μM for ammonium, and 0.079 pmol cell?1 h?1 and 1.79 μM for phosphate. The maximum specific uptake rates (Vmax) for nitrate, ammonia, and phosphate were estimated to be 8.95, 44.1, and 21.3 day?1, respectively. A comparison of Vmax/Ks, which is also an index of affinity to nutrients, between this species and others suggested that H. circularisquama can utilize nitrate and ammonia efficiently, but not phosphate. Considering both reports describing that H. circularisquama has the ability to utilize dissolved organic phosphorus (DOP) and the DOP concentration is higher than phosphate in Hiroshima Bay, it was concluded that H. circularisquama became dominant due to the phosphate reduction measure.  相似文献   

2.
The utilization of nine dissolved organic phosphorus (DOP) compounds by five bloom-causing phytoplankton species was studied under batch culture conditions. The DOP compounds included were adenosine 5-triphosphate (ATP), adenosine 5-monophosphate (AMP), cytidine 5-monophosphate (CMP), guanosine 5-monophosphate (GMP), uridine 5-monophosphate (UMP), glucose-6-phosphate (G6P), sodium glycerophosphate (GYP), 4-nitrophenyl phosphate (NPP), and triethyl phosphate (TEP), and the phytoplankton taxa were Skeletonema costatum, Prorocentrum micans, Alexandrium tamarense, Chattonella marina, and Heterosigma akashiwo. The four flagellate taxa, P. micans, A. tamarense, C. marina, and H. akashiwo, grew well under various DOP regimes. P. micans and C. marina were the most capable of using DOP compounds, sustaining better growth on a majority of nucleotides (ATP, AMP, CMP, GMP, and UMP) and phosphomonoesters (G6P and GYP) than in inorganic phosphorus (P) controls. A. tamarense and H. akashiwo showed equivalent growth in most organic and inorganic P cultures, while the diatom species, S. costatum, could only utilize AMP and GMP. Furthermore, A. tamarense and C. marina could endure N, P-depleted conditions. Among the nine DOP compounds tested, the nucleotide compounds had the highest nutritional value for algal cell growth, while TEP could not sustain growth as the sole source of P. These results suggest that enhanced DOP utilization and the endurance of nutrient-limitation by harmful flagellate taxa offer their competitive advantages, which may account for the frequent occurrence of their blooms in coastal waters.  相似文献   

3.
High levels of intraspecific variability are often associated with HAB species, and this variability is likely an important factor in their competitive success. Heterosigma akashiwo (Hada) Hada ex Y. Hara et M. Chihara is an ichthyotoxic raphidophyte capable of forming dense surface‐water blooms in temperate coastal regions throughout the world. We isolated four strains of H. akashiwo from fish‐killing northern Puget Sound blooms in 2006 and 2007. By assessing numerous aspects of biochemistry, physiology, and toxicity, we were able to describe distinct ecotypes that may be related to isolation location, source population, or bloom timing. Contrasting elements among strains were cell size, maximum growth and photosynthesis rates, tolerance of low salinities, amino acid use, and toxicity to the ciliate grazer Strombidinopsis acuminatum (Fauré‐Fremiet). In addition, the rDNA sequences and chloroplast genome of each isolate were examined, and while all rDNA sequences were identical, the chloroplast genome identified differences among the strains that tracked differences in ecotype. H. akashiwo strain 07A, which was isolated from an unusual spring bloom, had a significantly higher maximum potential photosynthesis rate (28.7 pg C · cell?1 · h?1) and consistently exhibited the highest growth rates. Strains 06A and 06B were not genetically distinct from one another and were able to grow on the amino acids glutamine and alanine, while the other two strains could not. Strain 07B, which is genetically distinct from the other three strains, exhibited the only nontoxic effect. Thus, molecular tools may support identification, tracking, and prediction of strains and/or ecotypes using distinctive chloroplast gene signatures.  相似文献   

4.
In April 2003, a novel Heterosigma akashiwo bloom was observed that extended from Bulls Bay, South Carolina USA, to approximately 8 km offshore. The bloom was associated with a fish kill of approximately 104 fish. The bloom coincided with salinities anomalously low for the region and optimal for H. akashiwo growth. The low salinities were related to the rediversion of freshwater a month earlier from the Cooper River into the Santee River, which partially feeds into Bulls Bay. H. akashiwo identification was confirmed using a species-specific real-time PCR assay modified for the direct amplification of target DNA from the bloom sample. Because this H. akashiwo bloom was associated with a fish kill, and exposure to bloom waters caused sublethal toxic effects on oysters, the resolution of the cause and potential recurrence of the bloom are of importance to fishery management.  相似文献   

5.
Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Chlamydomonas acidophila Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae (Cd. acidophila, Chlorella protothecoides W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga (Chlamydomonas segnis H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.  相似文献   

6.
7.
8.
The permanently eutrophic Sundays Estuary experiences recurrent harmful algal blooms (HABs) of Heterosigma akashiwo (Raphidophyceae). This study aimed to identify the environmental variables shaping phytoplankton community composition and succession patterns during a typical spring/summer harmful algal bloom (HAB) period. Monitoring of abiotic and phytoplankton variables was undertaken over the period of a month in 2016. Surface water salinity corresponding to mesohaline conditions (9 to 12) was a prerequisite for site selection. During the study, two HABs (>550 µg Chl a l?1) of H. akashiwo occurred, each lasting for approximately a week in duration. Analyses highlighted nutrient depletion (i.e. nitrate and phosphate concentrations) as the key constraint on bloom duration. When the density of H. akashiwo decreased, the community composition became more diverse with species belonging to Bacillariophyceae and Dinophyceae becoming more abundant; albeit to a lesser degree (<180 µg Chl a l?1). Dissolved oxygen shifted from super-saturated conditions (>14 mg l?1) during peak HAB conditions, to instances of bottom water oxygen depletion (2–4 mg l?1) during the decay phase. These findings highlight the potential severity of transforming a catchment from natural to one that is highly regulated by agricultural practices, while also emphasising the need for management intervention.  相似文献   

9.
Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments.  相似文献   

10.
11.
Temporal fluctuations of algicidal micro-organisms against the red tide causing raphidophycean flagellates Chattonella antiqua (Hada) Ono and Heterosigma akashiwo (Hada) Hada ex Hara et Chihara were investigated using the microplate most probable number (MPN) method in northern Hiroshima Bay and Harima-Nada, the Seto Inland Sea, in 1992 and 1993. In Har-ima-Nada, both flagellates appeared at low levels (< 1 cell mL?1), and killer micro-organisms against the two flagellates (C-killer for C. antiqua and H-killer for H. akashiwo) also appeared at low densities (< 2 mL?1). In northern Hiroshima Bay, C. antiqua cells were scarce (< 1 cell mL?1), and C-killers occurred at a low level (≤ 3.4 mL?1). Conversely, red tides of H. akashiwo occurred there in June of both years. The dynamics of H-killers revealed a close relationship with that of H. akashiwo populations. H-killers followed the increase of H. akashiwo cells, reached a maximum level after the beginning of decline of H. akashiwo, maintained a high level for at least 1 week after the crash of bloom, and then decreased. C-killers consistently remained at low densities during the period of H. akashiwo red tides in both 1992 and 1993. Hence, algicidal micro-organisms specifically associated with the occurrence and crash of H. akashiwo red tides, and presumably contributed to the rapid termination of the red tides in the coastal seas such as northern Hiroshima Bay.  相似文献   

12.
《Harmful algae》2008,7(1):1-10
On 29 April 2003, a Heterosigma akashiwo bloom (9.5 × 104 cells mL−1) associated with a fish kill (>104 dead fishes estimated from aerial surveys) was observed offshore of Bulls Bay, McLellanville, South Carolina, USA. To assess a potential cause of this bloom event, we investigated the bacterial diversity and algal/bacterial interactions in the bloom microbial community. Thirty-five bacterial strains were isolated and screened for algicidal or algal growth-promoting activities. One strain (BBB25) had significant growth-promoting effects on all 7 algal species tested: three raphidophytes (Heterosigma akashiwo, Chattonella subsalsa, Fibrocapsa japonica), two diatoms (Chaetoceros neogracile, Nitzschia sp.), a cryptophyte (Cryptomonas sp.), and a chlorophyte, Ankistrodesmus sp. This strain (BBB25) is a Gram-positive, rod-shaped spore-forming bacterium. Partial 16S rDNA gene sequence and morphological characters indicated that BBB25 is related closely to the genus Bacillus. The general nature of the algal response indicates that the growth-promoting effects of BBB25 are not specific to H. akashiwo, and suggests potentially widespread effects. Since the presence or relative abundance of the other algal species was not assessed during the bloom initiation period, the selective stimulatory effect on H. akashiwo bloom formation in Bulls Bay is unknown. These results demonstrate, however, the potential for bacterial species to play a regulatory role in bloom formation.  相似文献   

13.
Diurnal vertical profile sampling of the water column, during a fish killing bloom of the raphidophycean alga Heterosigma akashiwo, revealed a phytoplankton population otherwise composed almost entirely of a variety of dinoflagellates. Of these Glenodinium danicum, Dinophysis acuta, Polykrikos schwartzii, Ceratium furca and Gyrodinium spirale were predominant. The distribution of the major species within the phytoplankton were documented and evidence of synchronous vertical migration of H. akashiwo, G. danicum and P. schwartzii was observed. Extracts of shellfish obtained during the bloom and tested by mouse bioassay showed no PSP toxicity but a marginal degree of DSP toxicity. During a subsequent one year phytoplankton monitoring programme another potentially noxious species (Chaetoceros convolutus) appeared and the seasonal reoccurrence of species present during the bloom (e.g. H. akashiwo) was observed. Important year to year differences in the summer phytoplankton (diatom versus flagellate dominated populations) were apparent and analysis of climate data showed that these differences related to different weather conditions prevailing during the two summer periods sampled. The data suggest the fish killing bloom was giving a chance to develop by a prolonged period of warm, calm weather (during which several heavy rainfall events occurred) leading to stable hydrographic conditions (i.e. stratification) and an increase in the retention time of water within the bay.  相似文献   

14.
Heterosigma akashiwo (Hada) gives rise to red tides along the Atlantic and Pacific coasts and is known to produce brevetoxins. This investigation establishes baseline information showing the presence of H. akashiwo along the central California coast based on water samples collected from the Santa Cruz pier in Monterey Bay (on the open coast) and the Berkeley pier in San Francisco Bay. Light and electron microscopy as well as two species-specific DNA probe methods based on cell homogenates preparations were employed to detect H. akashiwo during the 2001–2002 field study. The DNA probe methods consisted of a sandwich hybridization assay (SHA), which targets ribosomal RNA (rRNA), and an end-point polymerase chain reaction (PCR) assay, which targets internal transcribed spacer (ITS) sequences of rRNA genes. The SHA was used to provide semi-quantitative data showing the intermittent presence of the species during a 13-month period in Monterey Bay. Samples that showed a variety of responses in the SHA (negative as well as the highest) were then subjected to the PCR assay in an attempt to confirm species identification using an independent DNA probe method that employs cell homogenates; samples included those from Monterey Bay and one from a red tide event in San Francisco Bay. SHA and PCR assays agreed on the presence or absence of H. akashiwo. Gene products from two field samples positive for H. akashiwo by PCR were cloned and sequenced and found to be identical to those of that species in GenBank. When the same samples were viewed by light microscopy, however, H. akashiwo cells were only seen in the sample with the highest abundance of that species, as evidenced by SHA. It was extremely difficult to recognize naturally occurring H. akashiwo using light microscopy in field samples that had been preserved with Lugol's iodine, including samples that gave positive results by cell homogenate methods. Results of this study indicate that H. akashiwo is present along the open California coast and could easily be missed in routine phytoplankton surveys. Despite its presence, H. akashiwo does not appear to routinely bloom with sufficient densities to cause harmful outbreaks of the frequency and severity documented in some other coastal environments. Molecular identification techniques may be the preferred approach over light microscopy when there is a need to rapidly screen many samples for fragile, harmful species and those that are otherwise problematic to identify based on their gross morphology alone.  相似文献   

15.
16.
Several aspects of the metabolism and composition of a strain of Anabaena have been studied during phosphorus deficiency. The effects of medium composition, substrate concentration, temperature, pH, and illumination on alkaline phosphatase activity and phosphate uptake have been examined. Of particular interest among these results was the dependence of maximum alkaline phosphatase activity on Ca and of phosphate uptake on Mg. Depletion of dissolved phosphate from the culture medium runs accompanied by a marked increase in alkaline phosphatase activity, initial rate of phosphate uptake, and total amount of phosphate taken up to satisfaction of the phosphorus debt. Readdition of phosphate to a phosphorus-deficient culture resulted in a rapid decline in the ability to take up phosphate but no loss of alkaline phosphatase beyond dilution of activity already present. Entry into phophorus deficiency was accompanied by a loss of heterocysts, a decline in chlorophyll a, protein, RNA, and cellular phosphorus, and an increase in carbohydrate per unit dry weight. The possible use of these changes as physiological indicators of phosphorus limitation in natural situations is discussed.  相似文献   

17.
18.
Hydrolysis of natural dissolved organic phosphorus (DOP) in three hardwater lakes of different trophic level was calculated from kinetic data of phosphatase activity (PA) in different size fractions. DOP as well as kinetics of PA were determined every fortnight in depth profiles during the year 1990. 60% of DOP was assumed to be suitable substrate for phosphatases. The rate of hydrolysis increased markedly with higher trophic level. Average hydrolysis rate of DOP in polytrophic lake Thaler See was 3.26 nM P min–1 (6 µg P-PO4 l–1 h–1). In oligotrophic Lake Herrensee, dissolved phosphatases were responsible for more than half of the total hydrolysis. In the other two lakes, bacterial and algal surface PA dominated hydrolysis in changing parts depending on kinetics and DOP concentration. The regeneration rate of phosphate by PA was compared to phosphorus (P) excretion rate of zooplankton. Excretion was calculated from zooplankton data and excretion equations from the literature. In oligotrophic Lake Herrensee, excretion by zooplankton recycled in average 18% of the phosphate amount which was hydrolysed from DOP by PA. With higher trophic level, relevance of P excretion from zooplankton decreased drastically.  相似文献   

19.
The development of a filamentous, nitrogen-fixing cyanobacterial bloom was followed during July–August 1990 in a stratified basin in the central Gulf of Finland, Baltic Sea. Hydrography, dissolved inorganic, particulate and total nutrients, chlorophyll a, alkaline phosphatase activity, 32PO4-uptake and phytoplankton species were measured. The study period was characterized by wind-induced mixing events, followed by marked nutrient pulses and plankton community responses. Phosphate uptake was highest throughout the study period in the size fraction dominated by bacteria and picocyanobacteria (< 2 µm) and the proportion of uptake in the size fraction 2–10 µm remained low (2–6%). Higher phosphate turnover times were observed in a community showing signs of enhanced heterotrophic activity. The bloom of filamentous, nitrogen-fixing cyanobacteria Aphanizomenon flos-aquae was promoted by a nutrient pulse with an inorganic nutrient ratio (DIN:DIP) of 15. The results show that the quality, frequency and magnitude of the physically forced nutrient pulses have an important role in determining the relative share of the different modes of phosphorus utilization and hence in determining the cyanobacterial bloom intensity and species composition in the Baltic Sea.  相似文献   

20.
The ability to utilize dissolved organic phosphorus (DOP) is important for phytoplankton to survive the scarcity of dissolved inorganic phosphorus (DIP), and alkaline phosphatase (AP) has been the major research focus as a facilitating mechanism. Here, we employed a unique molecular ecological approach and conducted a broader search for underpinning molecular mechanisms of adenosine triphosphate (ATP) utilisation. Cultures of the dinoflagellate Karenia mikimotoi were set up in L1 medium (+P), DIP‐depleted L1 medium (–P) and ATP‐replacing‐DIP medium (ATP). Differential gene expression was profiled for ATP and +P cultures using suppression subtractive hybridisation (SSH) followed by 454 pyrosequencing, and RT‐qPCR methods. We found that ATP supported a similar growth rate and cell yield as L1 medium and observed DIP release from ATP into the medium, suggesting that K. mikimotoi cells were expressing extracellular hydrolases to hydrolyse ATP. However, our SSH, qPCR and enzymatic activity assays indicated that 5′‐nucleotidase (5NT), rather than AP, was responsible for ATP hydrolysis. Further gene expression analyses uncovered that intercellular purine metabolism was significantly changed following the utilisation of ATP. Our findings reveal a multi‐faceted machinery regulating ATP utilisation and P metabolism in K. mikimotoi, and underscore AP activity is not the exclusive indicator of DOP utilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号