首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Continuously generated hydrogen peroxide (H2O2) inhibits typical apoptosis and instead initiates a caspase‐independent, apoptosis‐inducing factor (AIF)‐mediated pyknotic cell death. This may be related to H2O2‐mediated DNA damage and subsequent ATP depletion, although the exact mechanisms by which the mode of cell death is decided after H2O2 exposure are still unclear. Accumulated evidence and our previous data led us to hypothesize that continuously generated H2O2, not an H2O2 bolus, induces severe DNA damage, signaling poly(ADP‐ribose) polymerase‐1 (PARP‐1) activation, ATP depletion, and eventually caspase‐independent cell death. Results from the present study support that H2O2 generated continuously by glucose oxidase causes excessive DNA damage and PARP‐1 activation. Blockage of PARP‐1 by a siRNA transfection or by pharmacological inhibitor resulted in the significant inhibition of ATP depletion, loss of mitochondrial membrane potential, nuclear translocation of AIF and endonuclease G, and eventually conversion to caspase‐dependent apoptosis. Overall, the current study demonstrates the different roles of PARP‐1 inhibition in modulation of cell death according to the method of H2O2 exposure, that is, continuous generation versus a direct addition. J. Cell. Biochem. 108: 989–997, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

4.
Wang L  Liu L  Shi Y  Cao H  Chaturvedi R  Calcutt MW  Hu T  Ren X  Wilson KT  Polk DB  Yan F 《PloS one》2012,7(5):e36418
Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc(min) mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.  相似文献   

5.
Objective : Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. Research Methods and Procedures : Mature 3T3‐L1 adipocytes were incubated with ajoene at concentrations up to 200 μM. Viability and apoptosis were quantified using an MTS‐based cell viability assay and an enzyme‐linked immunosorbent assay for single‐stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen‐activated protein kinases extracellular signal‐regulating kinase 1/2 (ERK) and c‐Jun‐N‐terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase‐3, translocation of apoptosis‐inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116‐kDa poly(ADP‐ribose) polymerase (PARP)‐1. Results : Ajoene induced apoptosis of 3T3‐L1 adipocytes in a dose‐ and time‐dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116‐kDa PARP‐1 in a caspase‐independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N‐acetyl‐l ‐cysteine effectively blocked ajoene‐mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP‐1. Discussion : These results indicate that ajoene‐induced apoptosis in 3T3‐L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen‐activated protein kinases, degradation of PARP‐1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.  相似文献   

6.
Epithelial cell shedding is a defence mechanism against infectious microbes that use these cells as an infection foothold and that eliminate microbes from infection foci by removing infected cells. Mycoplasma pneumoniae, a causative agent of respiratory infections, is known to adhere to and colonise the surface of ciliated airway epithelial cells; it produces a large amount of hydrogen peroxide, indicating its capability of regulating hydrogen peroxide‐induced infected cell detachment. In this study, we found that M. pneumoniae reduces exogenous hydrogen peroxide‐induced detachment of the infected cells from culture plates. This cell detachment occurred dependently of DNA damage‐initiated, poly (ADP‐ribose) polymerase 1 (PARP1)‐mediated cell death, or parthanatos. In cells infected with M. pneumoniae, exogenous hydrogen peroxide failed to induce DNA damage‐initiated poly (ADP‐ribose) (PAR) synthesis and concomitant increased cytoplasmic membrane rupture, both of which are biochemical hallmarks of parthanatos. The impairment of PAR synthesis was attributed to a reduction in the amount of cytosolic nicotinamide adenine dinucleotide (NAD), a substrate of PARP1, caused by M. pneumoniae. On the other hand, nonadherent mutant strains of M. pneumoniae showed a lower ability to reduce cell detachment than wild‐type strains, but the extent to which NAD was decreased in infected cells was comparable to that seen in the wild‐type strain. We found that NAD depletion could induce PARP1‐independent cell detachment pathways following stimulation with hydrogen peroxide and that M. pneumoniae could also regulate PARP1‐independent cell detachment in a cytoadhesion‐dependent manner. These results suggest that M. pneumoniae might regulate infected cell detachment induced by hydrogen peroxide that it produces itself, and such a mechanism may contribute to sustaining the bacterial infection.  相似文献   

7.
The mechanism of the cytotoxic effect exerted by parthenolide on tumor cells is not clearly defined today. This article shows that parthenolide stimulates in human osteosarcoma MG63 and melanoma SK‐MEL‐28 cells a mechanism of cell death, which is not prevented by z‐VAD‐fmk and other caspase inhibitors. In particular treatment with parthenolide rapidly stimulated (1–2 h) reactive oxygen species (ROS) generation by inducing activation of extracellular signal‐regulated kinase 1/2 (ERK 1/2) and NADPH oxidase. This event caused depletion of thiol groups and glutathione, NF‐κB inhibition, c‐Jun N‐terminal kinase (JNK) activation, cell detachment from the matrix, and cellular shrinkage. The increase of ROS generation together with the mitochondrial accumulation of Ca2+ also favored dissipation of Δψm, which seemed primarily determined by permeability transition pore opening, since Δψm loss was partially prevented by the inhibitor cyclosporin A. Staining with Hoechst 33342 revealed in most cells, at 3–5 h of treatment, chromatin condensation, and fragmentation, while only few cells were propidium iodide (PI)‐positive. In addition, at this stage apoptosis inducing factor (AIF) translocated to the nucleus and co‐localized with areas of condensed chromatin. Prolonging the treatment (5–15 h) ATP content declined while PI‐positive cells strongly augmented, denouncing the increase of necrotic effects. All these effects were prevented by N‐acetylcysteine, while caspase inhibitors were ineffective. We suggest that AIF exerts a crucial role in parthenolide action. In accordance, down‐regulation of AIF markedly inhibited parthenolide effect on the production of cells with apoptotic or necrotic signs. Taken together our results demonstrate that parthenolide causes in the two cell lines a caspase‐independent cell death, which is mediated by AIF. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

9.
Programmed necrosis induced by DNA alkylating agents, such as MNNG, is a caspase‐independent mode of cell death mediated by apoptosis‐inducing factor (AIF). After poly(ADP‐ribose) polymerase 1, calpain, and Bax activation, AIF moves from the mitochondria to the nucleus where it induces chromatinolysis and cell death. The mechanisms underlying the nuclear action of AIF are, however, largely unknown. We show here that, through its C‐terminal proline‐rich binding domain (PBD, residues 543–559), AIF associates in the nucleus with histone H2AX. This interaction regulates chromatinolysis and programmed necrosis by generating an active DNA‐degrading complex with cyclophilin A (CypA). Deletion or directed mutagenesis in the AIF C‐terminal PBD abolishes AIF/H2AX interaction and AIF‐mediated chromatinolysis. H2AX genetic ablation or CypA downregulation confers resistance to programmed necrosis. AIF fails to induce chromatinolysis in H2AX or CypA‐deficient nuclei. We also establish that H2AX is phosphorylated at Ser139 after MNNG treatment and that this phosphorylation is critical for caspase‐independent programmed necrosis. Overall, our data shed new light in the mechanisms regulating programmed necrosis, elucidate a key nuclear partner of AIF, and uncover an AIF apoptogenic motif.  相似文献   

10.
Background and Aim: Our previous study of Helicobacter pylori‐induced apoptosis showed the involvement of Bcl‐2 family proteins and cytochrome c release from mitochondria. Here, we examine the release of other factors from mitochondria, such as apoptosis‐inducing factor (AIF), and upstream events involving caspase‐8 and Bid. Methods: Human gastric adenocarcinoma (AGS) cells were incubated with a cagA‐positive H. pylori strain for 0, 3, 6, and 24 hours and either total protein or cytoplasmic, nuclear, and mitochondrial membrane fractions were collected. Results: Proteins were immunoblotted for AIF, Bid, polyadenosine ribose polymerase (PARP), caspase‐8, and β‐catenin. H. pylori activated caspase‐8, caused PARP cleavage, and attenuated mitochondrial membrane potential. A time‐dependent decrease in β‐catenin protein expression was detected in cytoplasmic and nuclear extracts, coupled with a decrease in β‐actin. An increase in the cytoplasmic pool of AIF was seen as early as 3 hours after H. pylori exposure, and a concomitant increase was seen in nuclear AIF levels up to 6 hours. A band corresponding to full‐length Bid was seen in both the cytoplasmic and the nuclear fractions of controls, but not after H. pylori exposure. Active AIF staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. Conclusion: H. pylori might trigger apoptosis in AGS cells via interaction with death receptors in the plasma membrane, leading to the cleavage of procaspase‐8, release of cytochrome c and AIF from mitochondria, and activation of subsequent downstream apoptotic events, as reported previously for chlorophyllin. This is consistent with AIF activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.  相似文献   

11.
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase‐independent, mitochondrion‐related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG‐based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild‐type p53‐containing mouse macrophages and p53‐deficient human macrophages. Most leptospire‐infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1‐phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53‐dependent p21Cip1/WAF1 and pro‐apoptotic Bcl‐2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire‐induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage‐dependent p53‐Bax/Noxa/Puma‐AIF/EndoG signalling mediates the leptospire‐induced cell cycle arrest and caspase‐independent apoptosis of macrophages.  相似文献   

12.
Celastrol has been reported to possess anticancer effects in various cancers; however, the precise mechanism underlying ROS-mediated mitochondria-dependent apoptotic cell death triggered by celastrol treatment in melanoma cells remains unknown. We showed that celastrol effectively induced apoptotic cell death and inhibited tumor growth using tissue culture and in vivo models of B16 melanoma. In addition to apoptotic cell death in B16 cells, several apoptotic events such as PARP cleavage and activation of caspase were confirmed. Pretreatment with caspase inhibitor modestly attenuated the celastrol-induced increase in PARP cleavage and sub-G1 cell population, implying that caspases play a partial role in celastrol-induced apoptosis. Moreover, ROS generation was detected following celastrol treatment. Blocking of ROS accumulation with ROS scavengers resulted in inhibition of celastrol-induced Bcl-2 family-mediated apoptosis, indicating that celastrol-induced apoptosis involves ROS generation as well as an increase in the Bax/Bcl-2 ratio leading to release of cytochrome c and AIF. Importantly, silencing of AIF by transfection of siAIF into cells remarkably attenuated celastrol-induced apoptotic cell death. Moreover, celastrol inhibited the activation of PI3K/AKT/mTOR signaling cascade in B16 cells. Our data reveal that celastrol inhibits growth and induces apoptosis in melanoma cells via the activation of ROS-mediated caspase-dependent and -independent pathways and the suppression of PI3K/AKT signaling.  相似文献   

13.
ω‐Hydroxyundec‐9‐enoic acid (ω‐HUA), a plant secondary metabolite, exhibits anti‐fungal activity. However, its effect on breast cancer cells is unknown. Here, we investigated the anti‐ breast cancer activity of ω‐HUA and its underlying mechanism. Treatment of human breast cancer cell lines, MDA‐MB‐231 and MDA‐MB‐435, with ω‐HUA induced apoptotic cell death with increased cleaved caspase‐3 and poly (ADP‐ribose) polymerase (PARP) levels, and p38 and JNK phosphorylation. Inhibition of these mitogen‐activated protein kinase (MAPK) pathways using specific inhibitors or siRNA, for p38 and JNK, respectively, blocked the ω‐HUA‐induced apoptosis in a dose‐dependent manner. Moreover, pretreatment of the cells with antioxidant N‐acetyl cysteine (NAC) inhibited ω‐HUA‐induced increased reactive oxygen species (ROS) levels, cleaved caspase‐3 and cleaved PARP, and phosphorylated JNK, phosphorylated p38, and increased cell viability and colony‐forming ability. MDA‐MB‐231 xenograft model showed that the ω‐HUA‐treated group exhibited greater tumor regression and significantly reduced tumor weight compared to that exhibited by the vehicle‐administered group. Collectively, ω‐HUA‐induced intracellular ROS generation induced breast cancer cell apoptosis through JNK and p38 signaling pathway activation, resulting in tumor regression. The results suggested that ω‐HUA is an effective supplement for inhibiting human breast cancer growth.  相似文献   

14.
Although methane sulfonate compounds are widely used for the protein modification for their selectivity of thiol groups in proteins, their intracellular signaling events have not yet been clearly documented. This study demonstrated the methane sulfonate chemical 1,4‐butanediyl‐bismethanethiosulfonate (BMTS)‐induced cascades of signals that ultimately led to apoptosis of Jurkat cells. BMTS induced apoptosis through fragmentation of DNA, activation of caspase‐9 and caspase‐3, and downregulation of Bcl‐2 protein with reduction of mitochondrial membrane potential. Moreover, BMTS intensely and transiently induced intracellular reactive oxygen species (ROS) production and ROS produced by BMTS was mediated through mitochondria. We also found that a reducing agent dithiothreitol (DTT) and an anti‐oxidant N‐acetyl cysteine (NAC) inhibited BMTS‐mediated caspase‐9 and ‐3 activation, ROS production and induction of Annexin V/propidium iodide double positive cells, suggesting the involvement of ROS in the apoptosis process. Therefore, this study further extends our understanding on the basic mechanism of redox‐linked apoptosis induced by sulfhydryl‐reactive chemicals. J. Cell. Biochem. 108: 1059–1065, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Human pathogenic Chlamydia trachomatis have evolved sophisticated mechanisms to manipulate host cell signalling pathways in order to prevent apoptosis. We show here that host cells infected with C. trachomatis resist apoptosis induced by polyI:C, a synthetic double‐stranded RNA that mimics viral infections. Infected cells displayed significantly reduced levels of PARP cleavage, caspase‐3 activation and a decrease in the TUNEL positive population in the presence of polyI:C. Interestingly, the chlamydial block of apoptosis was upstream of the initiator caspase‐8. Processing of caspase‐8 was reduced in infected cells and coincided with a decrease in Bid truncation and downstream caspase‐9 cleavage. Moreover, the enzymatic activity of caspase‐8, measured by a luminescent substrate, was significantly reduced in infected cells. Caspase‐8 inhibition by Chlamydia was dependent on cFlip as knock‐down of cFlip decreased the chlamydial block of caspase‐8 activation and consequently reduced apoptosis inhibition. Our data implicate that chlamydial infection interferes with the host cell's response to viral infections and thereby influences the fate of the cell.  相似文献   

16.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

17.
It has been demonstrated that naturally occurring coumarins have strong biological activity against many cancer cell lines. In this study, we assessed the cytotoxicity induced by the naturally isolated coumarin A/AA in different cancer cell lines (HeLa, Calo, SW480, and SW620) and in normal peripheral‐blood mononuclear cells (PBMCs). Cytotoxicity was evaluated using the MTT assay. The results demonstrate that coumarin A/AA was cytotoxic in the four cancer cell lines tested and importantly was significantly less toxic in PBMCs isolated from healthy donors. The most sensitive cancer cell line to coumarin A/AA treatment was Hela. Thus, the programmed cell death (PCD) mechanism induced by this coumarin was further studied in this cell line. DNA fragmentation, histomorphology, cell cycle phases, and subcellular distribution of PCD proteins were assessed. The results demonstrated that DNA fragmentation, but not significant cell cycle disruptions, was part of the PCD activated by coumarin A/AA. Interestingly, it was found that apoptosis‐inducing factor (AIF), a proapoptotic protein of the mitochondrial intermembrane space, was released to the cytoplasm in treated cells as detected by the western blot analysis in subcellular fractions. Nevertheless, the active form of caspase‐3 was not detected. The overall results indicate that coumarin A/AA induces a caspase‐independent apoptotic‐like cell death program in HeLa cells, mediated by the early release of AIF and suggest that this compound may be helpful in clinical oncology. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:263–272, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20288  相似文献   

18.
When the chlorophyte alga Dunaliella tertiolecta Butcher is placed in darkness, a form of programmed cell death with many similarities to apoptosis is induced, including the induction of caspase‐like proteases. Many uncertainties about the regulation and mediators that participate in the process remain. To examine the relationship between caspase‐like activities and different apoptotic events (i.e., phosphatidylserine [PS] translocation), increases in membrane permeability and numbers of dead cells revealed by SYTOX‐green staining, and the generation of reactive oxygen species (ROS), we used the broad‐range caspase inhibitor Boc‐D‐FMK to block the activity of the whole class of caspase‐like proteins simultaneously. In the presence of the inhibitor, ROS were not produced, and cells did not die. Loss of membrane asymmetry, indicated by external labeling of PS by annexin V, was apparent at midstages of light deprivation, although it did not conform to the typical pattern for PS exposure observed in metazoans or vascular plants, which occurs at early stages of the apoptotic event. Thus, we have evidence for a link between ROS and cell death involving caspase‐like enzymes in an alga. The fact that caspase‐like inhibitors prevent not only cell death, but also ROS and loss of cell membrane integrity and asymmetry, suggests that caspase‐like proteases might have regulatory roles early in cell death, in addition to dismantling functions.  相似文献   

19.
作为一种不同于凋亡的新型调控性细胞死亡形式,parthanatos与神经退行性疾病、中风、谷氨酸兴奋性中毒、活性氧(ROS)诱导的损伤和肿瘤等诸多疾病的发生发展密切相关.由于多聚ADP核糖聚合酶-1(ADP-ribose polymerase-1,PARP-1)的异常活化是诱发parthanatos发生的先决条件,所以...  相似文献   

20.
Zhou G  Roizman B 《Journal of virology》2000,74(19):9048-9053
Programmed cell death activated by herpes simplex virus 1 mutants can be caspase dependent or independent depending on the nature of the infected cell. The recently discovered mitochondrial apoptosis-inducing factor (AIF) on activation is translocated to the nucleus and induces programmed cell death that is caspase independent. To assess the role of AIF and also to assay apoptosis-related events in primary human embryonic lung (HEL) fibroblasts, cells were mock infected or infected with wild-type virus previously shown not to induce apoptosis in continuous lines of primate cells or with the d120 mutant lacking infected cell protein no. 4 (ICP4) and were shown to induce apoptosis in all cell lines tested. Cells exposed to dexamethasone or osmotic shock induced by sorbitol were the positive controls. The results were as follows: (i) AIF was translocated to the nucleus in all infected cell cultures and in cells treated with dexamethasone or sorbitol, but cells infected with the wild type-virus showed no evidence of undergoing programmed death. (ii) Cytochrome c was released from mitochondria of cells infected with the d120 mutant or exposed to dexamethasone or sorbitol but not from mitochondria in cells treated with sorbitol and infected with the wild-type virus. (iii) Poly(ADP-ribose) polymerase was cleaved in mock-infected cells exposed to sorbitol or dexamethasone and in cells infected with the d120 mutant but not in either untreated cells infected with wild-type virus or cells exposed to sorbitol and then infected with wild-type virus. In contrast to HEp-2 cells, neither d120 infection nor treatment with dexamethasone or sorbitol caused fragmentation of DNA in HEL fibroblasts. Electron microscopic examination showed chromatin condensation and vacuolization in a fraction of cells infected with d120 but not in wild-type virus-infected cells or cells treated with dexamethasone or sorbitol. We conclude that AIF is translocated to the nucleus in infected cells but apoptosis does not ensue in wild-type-infected cells. HEL fibroblasts infected with the d120 virus exhibit symptoms of classical apoptosis, such as cytochrome c release and cleavage of poly(ADP-ribose) polymerase observed also in cells undergoing caspase 3-dependent programmed cell death in which AIF is either not involved or not a contributory factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号