首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non‐segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non‐cytopathically in the cell nucleus, leading to establishment of long‐lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G ) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non‐transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M ) and G genes in the genome, is reported. rBoDV‐ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG‐GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG‐GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG‐GFP was also demonstrated. These findings indicate that the rBoDV ΔMG‐based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.
  相似文献   

2.
Amyloid-β (Aβ) peptide instinctively aggregate and form plaques in the brain of Alzheimer’s disease (AD) patients. At present, there is no cure or treatment for AD, and significant effort has, therefore, been made to discover potent drugs against AD. Previous studies reported that a resveratrol and clioquinol hybrid compound [(E)-5-(4-hydroxystyryl)quinolone-8-ol], C1, strongly inhibit Aβ42 aggregation and disassemble preformed fibrils. However, the atomic level details of the inhibitory mechanism of C1 against Aβ42 aggregation and protrofibril disassembly remains elusive. In this regard, molecular docking and molecular dynamics (MD) simulation of Aβ42 monomer, Aβ42 monomer–C1 complex, Aβ42 protofibril, and Aβ42 protofibril–C1 complex were performed in the present study. MD simulations highlighted that C1 bind in the central hydrophobic core (CHC) region, i.e., KLVFF (16–20) of Aβ42 monomer, which plays a critical role in Aβ42 aggregation. C1 promote the formation of native helical conformation in the Aβ42 monomer and decrease the probability of D23–K28 salt bridge interaction that is critical in the formation of aggregation-prone β-sheet conformation. Further, C1 destabilize Aβ42 protofibril structure by increasing the interchain distance between chains A–B, disrupting the salt–bridge interaction between D23–K28, and decreasing the number of backbone hydrogen bonds between chains A–B of the Aβ42 protofibril structure. The insights into the underlying inhibitory mechanism of small molecules that display potential in vitro anti–aggregation activity against Aβ42 will be beneficial for the rational design of more potent drug molecules against AD.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
The abnormal deposition of amyloid‐β (Aβ) peptides in the brain is the main neuropathological hallmark of Alzheimer's disease (AD). Amyloid deposits are formed by a heterogeneous mixture of Aβ peptides, among which the most studied are Aβ40 and Aβ42. Aβ40 is abundantly produced in the human brain, but the level of Aβ42 is remarkably increased in the brain of AD patients. Aside from Aβ40 and Aβ42, recent data have raised the possibility that Aβ43 peptides may be instrumental in AD pathogenesis. Besides its length, whether the Aβ aggregated form accounts for the neurotoxicity is also particularly controversial. Aβ fibrils are generally considered as key pathogenic substances in AD pathogenesis. Nevertheless, recent data implicated soluble Aβ oligomers as the main cause of synaptic dysfunction and memory loss in AD. To further address this uncertainty, we analyzed the neurotoxicity of different Aβ species and Aβ forms at the cellular level. The results showed that Aβ42 could form oligomers significantly faster than Aβ40 and Aβ43 and Aβ42 oligomers showed the greatest level of neurotoxicity. Regardless of the length of Aβ peptides, Aβ oligomers induced significantly higher cytotoxicity compared with the other two Aβ forms. Surprisingly, the neurotoxicity of fibrils in PC12 cells was only marginally but not significantly stronger than monomers, contrary to previous reports. Altogether, our findings demonstrate the high pathogenicity of Aβ42 among the three Aβ species and support the idea that Aβ42 oligomers contribute to the pathological events leading to neurodegeneration in AD. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
《朊病毒》2013,7(4):346-349
Mouse models of Alzheimer disease (AD) have been generated based on Amyloid-β Precursor Protein (AβPP) and the Presenilin (PSEN) gene mutations associated with familial AD (FAD). Such models have provided valuable insights into AD pathogenesis and represent an important research tool for the discovery of potential treatments. To model amyloid deposition in AD, we generated a new mouse line based on the presence of two copies of the genomic region encoding human wild-type AβPP as well as a mutation (L166P) in the murine Psen1. By ~6 months of age, these mice have begun to develop cerebral Aβ pathology with a significant increase in the levels of AβPP C-terminal fragments and Aβ42, as well as increase Aβ42/Aβ40 ratio. Since in the brain and other tissues of these mice, wild-type human AβPP mRNA and protein levels are comparable to those of endogenous AβPP, this model may allow studies about the role of AβPP isoforms in the pathogenesis of AD. This animal model may be suitable to test drugs aimed at inhibiting expression or altering splicing and processing of AβPP, without artifacts associated with the presence of mutations in AβPP or overexpression due to the use of exogenous promoters. These features of the new model are of critical importance in assessing the success of therapeutic interventions.  相似文献   

5.
β-淀粉样蛋白(β amyloid,Aβ)在海马区的沉积是阿尔茨海默病(Alzheimer′s disease,AD)发病的典型表现,清除或降低Aβ含量是治疗AD的目标之一.较之Aβ生成的增多,体内降解Aβ能力的下降在AD发病过程中显得更为重要.尽管Aβ在体内可以通过运输到血液和脑脊液途径来清除,但大部分Aβ被中性内肽酶(neprilysin,NEP)为代表的一类蛋白酶降解为小分子后从体内清除.老年人、轻度认知障碍期(MCI)和AD患者的NEP活性显著下降,且NEP活性下降与脑内Aβ升高及AD患者认知功能损伤相关.NEP有可能成为AD治疗的潜在药物靶点,针对轻度认知障碍前期(pre-MCI)和MCI,提高NEP的活性,促进Aβ的降解,有可能延缓AD的发生和发展.  相似文献   

6.
7.

Background

Apolipoprotein E (apoE) is a major cholesterol transport protein found in association with brain amyloid from Alzheimer's disease (AD) patients and the ε4 allele of apoE is a genetic risk factor for AD. Previous studies have shown that apoE forms a stable complex with amyloid β (Aβ) peptides in vitro and that the state of apoE lipidation influences the fate of brain Aβ, i.e., lipid poor apoE promotes Aβ aggregation/deposition while fully lipidated apoE favors Aβ degradation/clearance. In the brain, apoE levels and apoE lipidation are regulated by the liver X receptors (LXRs).

Results

We investigated the hypothesis that increased apoE levels and lipidation induced by LXR agonists facilitates Aβ efflux from the brain to the cerebral spinal fluid (CSF). We also examined if the brain expression of major apoE receptors potentially involved in apoE-mediated Aβ clearance was altered by LXR agonists. ApoE, cholesterol, Aβ40, and Aβ42 levels were all significantly elevated in the CSF of rats after only 3 days of treatment with LXR agonists. A significant reduction in soluble brain Aβ40 levels was also detected after 6 days of LXR agonist treatment.

Conclusions

Our novel findings suggest that central Aβ lowering caused by LXR agonists appears to involve an apoE/cholesterol-mediated transport of Aβ to the CSF and that differences between the apoE isoforms in mediating this clearance pathway may explain why individuals carrying one or two copies of APOE ε4 have increased risk for AD.
  相似文献   

8.
Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aβ) homeostasis via poorly understood mechanisms. Here we report that NRBF2 (nuclear receptor binding factor 2), a key component and regulator of the PtdIns3K, is involved in APP-CTFs homeostasis in AD cell models. We found that NRBF2 interacts with APP in vivo and its expression levels are reduced in hippocampus of 5XFAD AD mice; we further demonstrated that NRBF2 overexpression promotes degradation of APP C-terminal fragments (APP-CTFs), and reduces Aβ1–40 and Aβ1-42 levels in human mutant APP-overexpressing cells. Conversely, APP-CTFs, Aβ1–40 and Aβ1-42 levels were increased in Nrbf2 knockdown or nrbf2 knockout cells. Furthermore, NRBF2 positively regulates autophagy in neuronal cells and NRBF2-mediated reduction of APP-CTFs levels is autophagy dependent. Importantly, nrbf2 knockout attenuates the recruitment of APP and APP-CTFs into phagophores and the sorting of APP and APP-CTFs into endosomal intralumenal vesicles, which is accompanied by the accumulation of the APP and APP-CTFs into RAB5-positive early endosomes. Collectively, our results reveal the potential connection between NRBF2 and the AD-associated protein APP by showing that NRBF2 plays an important role in regulating degradation of APP-CTFs through modulating autophagy.  相似文献   

9.
Amyloid β protein (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). Point mutations within the Aβ sequence associated with familial AD (FAD) are clustered around the central hydrophobic core of Aβ. Several types of mutations within the Aβ sequence have been identified, and the ‘Arctic’ mutation (E22G) has a purely cognitive phenotype typical of AD. Previous studies have shown that the primary result of the ‘Arctic’ mutation is increased formation of Aβ protofibrils. However, the molecular mechanism underlying this effect remains unknown. Aβ42 binds to a neuronal nicotinic acetylcholine receptor subunit, neuronal acetylcholine receptor subunit alpha‐7 (CHRNA7), with high affinity and, thus, may be involved in the pathogenesis of AD. Therefore, to clarify the molecular mechanism of Arctic mutation‐mediated FAD, we focused on CHRNA7 as a target molecule of Arctic Aβ. We performed an in vitro binding assay using purified CHRNA7 and synthetic Arctic Aβ40, and demonstrated that Arctic Aβ40 specifically bound to CHRNA7. The aggregation of Arctic Aβ40 was enhanced with the addition of CHRNA7. Furthermore, the function of CHRNA7 was detected by measuring Ca2+ flux and phospho‐p44/42 MAPK (ERK1/2) activation. Our results indicated that Arctic Aβ40 aggregation was enhanced by the addition of CHRNA7, which destabilized the function of CHRNA7 via inhibition of Ca2+ responses and activation of ERK1/2. These findings indicate that Arctic Aβ mutation may be involved in the mechanism underlying FAD. This mechanism may involve binding and aggregation, leading to the inhibition of CHRNA7 functions.

  相似文献   


10.
Drosophila melanogaster expressing amyloid-β42 (Aβ42) transgenes have been used as models to study Alzheimer’s disease. Various Aβ42 transgenes with different structures induce different phenotypes, which make it difficult to compare data among studies which use different transgenic lines. In this study, we compared the phenotypes of four frequently used Aβ42 transgenic lines, UAS-Aβ422X, UAS-Aβ42BL33770, UAS-Aβ4211C39, and UAS-Aβ42H29.3. Among the four transgenic lines, only UAS-Aβ422X has two copies of the upstream activation sequence-amyloid-β42 (UAS-Aβ42) transgene, while remaining three have one copy. UAS-Aβ42BL33770 has the 3′ untranslated region of Drosophila α-tubulin, while the others have that of SV40. UAS-Aβ4211C39 and UAS-Aβ42H29.3 have the rat pre-proenkephalin signal peptide, while UAS-Aβ422X and UAS-Aβ42BL33770 have that of the fly argos protein. When the transgenes were expressed ectopically in the developing eyes of the flies, UAS-Aβ422X transgene resulted in a strongly reduced and rough eye phenotype, while UAS-Aβ42BL33770 only showed a strong rough eye phenotype; UAS-Aβ42H29.3 and UAS-Aβ4211C39 had mild rough eyes. The levels of cell death and reactive oxygen species (ROS) in the eye imaginal discs were consistently the highest in UAS-Aβ422X, followed by UAS-Aβ42BL33770, UAS-Aβ4211C39, and UAS-Aβ42H29.3. Surprisingly, the reduction in survival during the development of these lines did not correlate with cell death or ROS levels. The flies which expressed UAS-Aβ4211C39 or UAS-Aβ42H29.3 experienced greatly reduced survival rates, although low levels of ROS or cell death were detected. Collectively, our results demonstrated that different Drosophila AD models show different phenotypic severity, and suggested that different transgenes may have different modes of cytotoxicity.

Abbreviations: Aβ42: amyloid-β42; AD: Alzheimer’s disease; UAS: upstream activation sequence  相似文献   


11.

Background

Crocetin, an agent derived from saffron, has multiple pharmacological properties, such as neuroprotective, anti-oxidant, and anti-inflammatory actions. These properties might benefit the treatment of Alzheimer’s disease (AD). In the present study, we tested whether crocetin attenuates inflammation and amyloid-β (Aβ) accumulation in APPsw transgenic mice, AD mouse models. Cell viability and the levels of Aβ40 and Aβ42 in HeLa cells stably transfected with Swedish mutant APP751 were evaluated. Mice with Swedish mutant APP751 transgene were used as transgenic mouse models of AD, and were orally administrated with crocetin. Aβ protein and inflammatory cytokines were measured with ELISA. NF-κB and P53 were measured with western blot assay. Learning and memory were analyzed with Morris water maze and novel object recognition tests.

Results

Crocetin significantly reduced Aβ40 and Aβ42 secretion in Hela cells without effecting cell viability. In AD transgenic mice, crocetin significantly reduced the pro-inflammatory cytokines and enhanced anti-inflammatory cytokine in plasma, suppressed NF-κB activation and P53 expression in the hippocampus, decreased Aβ in various brain areas, and improved learning and memory deficits.

Conclusion

Crocetin improves Aβ accumulation-induced learning and memory deficit in AD transgenic mice, probably due to its anti-inflammatory and anti-apoptotic functions.
  相似文献   

12.
Amyloid beta (Aβ) proteins are produced from amyloid precursor protein cleaved by β- and γ-secretases, and are the main components of senile plaques pathologically found in Alzheimer's disease (AD) patient brains. Therefore, the relationship between AD and Aβs has been well studied for both therapeutic and diagnostic purposes. Several enzymes have been reported to degrade Aβs in vivo, with neprilysin (NEP) and insulysin (insulin-degrading enzyme, IDE) being the most prominent. In this article, we describe the mass spectrometric characterization of peptide fragments generated using NEP and IDE, and clarify the differences in digestion specificities between these two enzymes for non-aggregated Aβ40, aggregated Aβ40, and Aβ40 peptide fragments, including Aβ16. Our results allowed identification of all the peptide fragments from non-aggregated Aβ40: NEP, 23 peptide fragments consisting of 2–11 amino-acid residues, 17 cleavage sites; IDE, 23 peptide fragments consisting of 6–33 amino-acid residues, 15 cleavage sites. Also, we confirmed that IDE can digest only whole Aβ40, whereas NEP can digest both Aβ40 and partial structures such as Aβ16 and peptide fragments generated by the digestion of Aβ40 by IDE. Furthermore, we confirmed that IDE and NEP are unable to digest aggregated Aβ40.  相似文献   

13.

Background

Alzheimer's disease (AD) is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ) in extracellular plaques. Mutations in amyloid precursor protein (APP) and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD.

Results

Adeno-associated viral (AAV) vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition) three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits.

Conclusion

The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in vivo, and demonstrate that whilst expression of Aβ42 alone is sufficient to initiate Aβ deposition, both Aβ40 and Aβ42 may contribute to cognitive deficits.  相似文献   

14.
Amyloid β-protein (A β) assembles into oligomers that play a seminal role in Alzheimer’s disease (AD), a leading cause of dementia among the elderly. Despite undisputed importance of A β oligomers, their structure and the basis of their toxicity remain elusive. Previous experimental studies revealed that the [K16A] substitution strongly inhibits toxicity of the two predominant A β alloforms in the brain, A β 40 and A β 42, whereas the [K28A] substitution exerts only a moderate effect. Here, folding and oligomerization of [A16]A β 40, [A28]A β 40, [A16]A β 42, and [A28]A β 42 are examined by discrete molecular dynamics (DMD) combined with a four-bead implicit solvent force field, DMD4B-HYDRA, and compared to A β 40 and A β 42 oligomer formation. Our results show that both substitutions promote A β 40 and A β 42 oligomerization and that structural changes to oligomers are substitution- and alloform-specific. The [K28A] substitution increases solvent-accessible surface area of hydrophobic residues and the intrapeptide N-to-C terminal distance within oligomers more than the [K16A] substitution. The [K16A] substitution decreases the overall β-strand content, whereas the [K28A] substitution exerts only a modest change. Substitution-specific tertiary and quaternary structure changes indicate that the [K16A] substitution induces formation of more compact oligomers than the [K28A] substitution. If the structure-function paradigm applies to A β oligomers, then the observed substitution-specific structural changes in A β 40 and A β 42 oligomers are critical for understanding the structural basis of A β oligomer toxicity and correct identification of therapeutic targets against AD.  相似文献   

15.
Alzheimer's disease (AD ) is a neurodegenerative pathology characterized by aggregates of amyloid‐β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD , mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β‐catenin signaling might also play a role in the onset and development of the disease. J20 APP swInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre‐symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ1–42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ1–42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild‐type (WT ) mice, including behavioral impairment, tau phosphorylation, increased Aβ1–42 in the hippocampus, decreased Aβ1–42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's‐like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD .

Read the Editorial Highlight for this article on page 356 .
  相似文献   

16.
As currently understood, Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is driven by the aggregation of amyloid beta (Aβ) protein. It has been shown that resveratrol (RES) may attenuate amyloid β peptide-induced toxicity, promote Aβ clearance and reduce senile plaques. However, it remains to be determined whether RES could interact directly with Aβ. The aim of the present study was to examine the direct binding of RES to monomer and fibril Aβ. Using surface plasmon resonance (SPR) and proton nuclear magnetic resonance (1H NMR), our results identified the direct binding of RES to Aβ. The ability of RES to bind to both fibril and monomer Aβ(1–40 and 1–42) was further analyzed by SPR. The binding response of RES to fAβ(1–42) was higher than that to monomer Aβ(1–42), whereas the binding response of RES to fAβ(1–40) was lower than that to monomer Aβ(1–40). The KD of RES for fibril Aβ(1–40 or 1–42) was higher than that for the corresponding monomer Aβ. Compared to the control compound Congo red (CR), the binding responses of RES to monomer Aβ(1–42) and Aβ(1–40) were stronger, but binding to fibril Aβ(1–42) was weaker, and the KDs of RES with both monomer and fibril Aβ(1–40) and Aβ(1–42) were higher than that of CR. When Aβ(1–40 or 1–42) was co-incubated with RES (50 μM), the thioflavin T fluorescence of the mixture was weakened, and the number and length of amyloid fibrils were decreased. Furthermore, the results of staining in consecutive brain slices from AD patients showed that RES (10−4 M) could stain senile plaques. These results indicated that RES could bind directly to Aβ in different states, which may provide new insight into the protective properties of RES against AD.  相似文献   

17.
Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer’s disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.  相似文献   

18.
Widespread cerebral deposition of a 40–42 amino acid peptide called amyloid β peptide (Aβ) in the form of amyloid fibrils is one of the most prominent neuropathologic features of Alzheimer's disease (AD). The clinical study provides evidence that accumulation of protofibrils due to the Arctic mutation (E22G) causes early AD onset. Melatonin showed beneficial effects in an AD mouse model. Mice were divided into four different groups (n=8 per group): (i) control group, (ii) scrambled Aβ-injected group, (iii) Aβ protofibril-injected group and (iv) melatonin-treated group. A single dose of (5 µg) Aβ protofibril was administered to the Aβ protofibril-injected and melatonin-treated groups via intracerebroventricular injections. The results demonstrate that melatonin treatment significantly reduces Aβ protofibril-induced reactive oxygen species (ROS) production, intracellular calcium levels and acetylcholinesterase activity in the neocortex and hippocampus regions. Based on these findings it is suggested that melatonin therapy might be a useful treatment for AD patients.  相似文献   

19.
Sortilin, a Golgi sorting protein and a member of the VPS10P family, is the co‐receptor for proneurotrophins, regulates protein trafficking, targets proteins to lysosomes, and regulates low density lipoprotein metabolism. The aim of this study was to investigate the expression and regulation of sortilin in Alzheimer's disease (AD). A significantly increased level of sortilin was found in human AD brain and in the brains of 6‐month‐old swedish‐amyloid precursor protein/PS1dE9 transgenic mice. Aβ42 enhanced the protein and mRNA expression levels of sortilin in a dose‐ and time‐dependent manner in SH‐SY5Y cells, but had no effect on sorLA. In addition, proBDNF also significantly increased the protein and mRNA expression of sortilin in these cells. The recombinant extracellular domain of p75NTR (P75ECD‐FC), or the antibody against the extracellular domain of p75NTR, blocked the up‐regulation of sortilin induced by Amyloid‐β protein (Aβ), suggesting that Aβ42 increased the expression level of sortilin and mRNA in SH‐SY5Y via the p75NTR receptor. Inhibition of ROCK, but not Jun N‐terminal kinase, suppressed constitutive and Aβ42‐induced expression of sortilin. In conclusion, this study shows that sortilin expression is increased in the AD brain in human and mice and that Aβ42 oligomer increases sortilin gene and protein expression through p75NTR and RhoA signaling pathways, suggesting a potential physiological interaction of Aβ42 and sortilin in Alzheimer's disease.

  相似文献   


20.
Alzheimer’s disease (AD) is a well-known neurodegenerative disease. Deposition of β-amyloid protein (Aβ) oligomers plays a crucial role in the disease progression. Previous studies showed that toxicity induced by Aβ oligomers in cultured neurons and adult rat brain was partially mediated by activation of glutamatergic N-methyl-d-aspartate receptors (NMDAR). Additionally, memantine, a noncompetitive NMDAR antagonist, can significantly improve cognitive functions in some AD patients. However, little is currently known about the potential role of NMDAR antagonist on the regulation of P-MARCKS protein to Aβ1?42 oligomers induced neurotoxicity. The protective effect and mechanism of NMDAR antagonist on primary neurons exposed to Aβ1?42 oligomers were investigated in the study. We have defined that the Aβ1?42 treatment decreased cell viability and increased apoptosis. Moreover, Aβ1?42 oligomers exposure increased P-MARCKS and PIP2 expressions, while decreased SYP expression. However, NMDAR antagonist pretreatment ameliorates Aβ1?42 oligomers induced neuronal apoptosis and partially reverses the expression of P-MARCKS, PIP2 and SYP. In conclusion, NMDAR antagonist may ameliorate neurotoxicity induced by Aβ1?42 oligomers through reducing neuronal apoptosis and protecting synaptic plasticity in rat primary neurons. The mechanism involved may be mediated by the variation of protein P-MARCKS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号