首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C‐19 steroids 4‐androstene‐3,17‐dione (AD), 1,4‐androstadiene‐3,17‐dione (ADD) or 9α‐hydroxy‐4‐androstene‐3,17‐dione (9OH‐AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH‐AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR‐like regulator (MSMEG_2868) can efficiently metabolize all C‐19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C‐19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C‐19+ cluster has apparently evolved independently from the upper cholesterol kstR‐regulon, but both clusters converge on the lower cholesterol kstR2‐regulon responsible for the metabolism of C and D steroid rings. Homologous C‐19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.  相似文献   

2.
A number of pharmaceutical steroid synthons are currently produced through the microbial side‐chain cleavage of natural sterols as an alternative to multi‐step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc2155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc2155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3‐ketosteroid 9α‐hydroxylase (KshAB) and a ketosteroid Δ1‐dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4‐androstadiene‐3,17‐dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039‐5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4‐androstene‐3,17‐dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc2155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids.  相似文献   

3.
4.
Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism.  相似文献   

5.
The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741‐1743 (highly homologous to a Pseudomonas aeruginosa acyl‐CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886‐MSMEG_1741‐1743 strictly required oleic acid for growth. The ΔMSMEG_1886‐ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742‐43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.  相似文献   

6.
7.
8.
9.

Background

Rhomboids are ubiquitous proteins with unknown roles in mycobacteria. However, bioinformatics suggested putative roles in DNA replication pathways and metabolite transport. Here, mycobacterial rhomboid-encoding genes were characterized; first, using the Providencia stuartii null-rhomboid mutant and then deleted from Mycobacterium smegmatis for additional insight in mycobacteria.

Methodology/Principal Findings

Using in silico analysis we identified in M. tuberculosis genome the genes encoding two putative rhomboid proteins; Rv0110 (referred to as “rhomboid protease 1”) and Rv1337 (“rhomboid protease 2”). Genes encoding orthologs of these proteins are widely represented in all mycobacterial species. When transformed into P. stuartii null-rhomboid mutant (ΔaarA), genes encoding mycobacterial orthologs of “rhomboid protease 2” fully restored AarA activity (AarA is the rhomboid protein of P. stuartii). However, most genes encoding mycobacterial “rhomboid protease 1” orthologs did not. Furthermore, upon gene deletion in M. smegmatis, the ΔMSMEG_4904 single mutant (which lost the gene encoding MSMEG_4904, orthologous to Rv1337, “rhomboid protease 2”) formed the least biofilms and was also more susceptible to ciprofloxacin and novobiocin, antimicrobials that inhibit DNA gyrase. However, the ΔMSMEG_5036 single mutant (which lost the gene encoding MSMEG_5036, orthologous to Rv0110, “rhomboid protease 1”) was not as susceptible. Surprisingly, the double rhomboid mutant ΔMSMEG_4904–ΔMSMEG_5036 (which lost genes encoding both homologs) was also not as susceptible suggesting compensatory effects following deletion of both rhomboid-encoding genes. Indeed, transforming the double mutant with a plasmid encoding MSMEG_5036 produced phenotypes of the ΔMSMEG_4904 single mutant (i.e. susceptibility to ciprofloxacin and novobiocin).

Conclusions/Significance

Mycobacterial rhomboid-encoding genes exhibit differences in complementing aarA whereby it''s only genes encoding “rhomboid protease 2” orthologs that fully restore AarA activity. Additionally, gene deletion data suggests inhibition of DNA gyrase by MSMEG_4904; however, the ameliorated effect in the double mutant suggests occurrence of compensatory mechanisms following deletion of genes encoding both rhomboids.  相似文献   

10.
11.
Nontuberculous mycobacteria are innately resistant to most antibiotics, although the mechanisms responsible for their drug resistance remain poorly understood. They are particularly refractory to thiacetazone (TAC), a second‐line antitubercular drug. Herein, we identified MSMEG_6754 as essential for the innate resistance of Mycobacterium smegmatis to TAC. Transposon‐mediated and targeted disruption of MSMEG_6754 resulted in hypersusceptibility to TAC. Conversely, introduction of MSMEG_6754 into Mycobacterium tuberculosis increased resistance 100‐fold. Resolution of the crystal structure of MSMEG_6754 revealed a homodimer in which each monomer comprises two hot‐dog domains characteristic of dehydratase‐like proteins and very similar to the HadAB complex involved in mycolic acid biosynthesis. Gene inactivation of the essential hadB dehydratase could be achieved in M. smegmatis and M. tuberculosis only when the strains carried an integrated copy of MSMEG_6754, supporting the idea that MSMEG_6754 and HadB share redundant dehydratase activity. Using M. smegmatis‐Acanthamoeba co‐cultures, we found that intra‐amoebal growth of the MSMEG_6754 deleted strain was significantly reduced compared with the parental strain. This in vivo growth defect was fully restored upon complementation with catalytically active MSMEG_6754 or HadABC, indicating that MSMEG_6754 plays a critical role in the survival of M. smegmatis within the environmental host.  相似文献   

12.

Background

Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs.

Methodology/Principal Findings

We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate.

Conclusions/Significance

MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria.  相似文献   

13.
14.
15.
Mycobacterium tuberculosis Rv0228, a membrane protein, is predicted as a drug target through computational methods. MSMEG_0319 (MS0319) in Mycobacterium smegmatis mc2155 is the ortholog of Rv0228. To study the effect of MS0319 protein on M. smegmatis, an MS0319 gene knockout strain (ΔMS0319) was generated via a homologous recombination technique in this study. The results showed that the lack of MS0319 protein in mc2155 cells led to the loss of viability at nonpermissive temperature. Scanning electron microscopy and transmission electron microscopy observations showed drastic changes in cellular shape especially cell wall disruption in ΔMS0319 cells. Proteomic analysis of ΔMS0319 cells through LC‐MS/MS revealed that 462 proteins had changes in their expressions by lacking MS0319 protein. The M. tuberculosis orthologs of these 462 proteins were found through BLASTp search and functional clustering and metabolic pathway enrichment were performed on the orthologs. The results revealed that most of them were enzymes involved in metabolism of carbohydrates and amino acids, indicating that Rv0228 played an important role in cellular metabolism. All these results suggested Rv0228 as a potential target for development of antituberculosis drugs.  相似文献   

16.
The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG_6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG_6394, solved to 2.9 Å resolution, revealed an α/β hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG_6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.  相似文献   

17.

Background

The unique cell wall of bacteria of the suborder Corynebacterineae is essential for the growth and survival of significant human pathogens including Mycobacterium tuberculosis and Mycobacterium leprae. Drug resistance in mycobacteria is an increasingly common development, making identification of new antimicrobials a priority. Recent studies have revealed potent anti-mycobacterial compounds, the benzothiazinones and dinitrobenzamides, active against DprE1, a subunit of decaprenylphosphoribose 2′ epimerase which forms decaprenylphosphoryl arabinose, the arabinose donor for mycobacterial cell wall biosynthesis. Despite the exploitation of Mycobacterium smegmatis in the identification of DprE1 as the target of these new antimicrobials and its use in the exploration of mechanisms of resistance, the essentiality of DprE1 in this species has never been examined. Indeed, direct experimental evidence of the essentiality of DprE1 has not been obtained in any species of mycobacterium.

Methodology/Principal Findings

In this study we constructed a conditional gene knockout strain targeting the ortholog of dprE1 in M. smegmatis, MSMEG_6382. Disruption of the chromosomal copy of MSMEG_6382 was only possible in the presence of a plasmid-encoded copy of MSMEG_6382. Curing of this “rescue” plasmid from the bacterial population resulted in a cessation of growth, demonstrating gene essentiality.

Conclusions/Significance

This study provides the first direct experimental evidence for the essentiality of DprE1 in mycobacteria. The essentiality of DprE1 in M. smegmatis, combined with its conservation in all sequenced mycobacterial genomes, suggests that decaprenylphosphoryl arabinose synthesis is essential in all mycobacteria. Our findings indicate a lack of redundancy in decaprenylphosphoryl arabinose synthesis in M. smegmatis, despite the relatively large coding capacity of this species, and suggest that no alternative arabinose donors for cell wall biosynthesis exist. Overall, this study further validates DprE1 as a promising target for new anti-mycobacterial drugs.  相似文献   

18.
PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
The role and function of PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) remains elusive. In this study for the first time, Mtb isogenic mutants missing selected PE_PGRSs were used to investigate their role in the pathogenesis of tuberculosis (TB). We demonstrate that the MtbΔPE_PGRS30 mutant was impaired in its ability to colonize lung tissue and to cause tissue damage, specifically during the chronic steps of infection. Inactivation of PE_PGRS30 resulted in an attenuated phenotype in murine and human macrophages due to the inability of the Mtb mutant to inhibit phagosome–lysosome fusion. Using a series of functional deletion mutants of PE_PGRS30 to complement MtbΔPE_PGRS30, we show that the unique C‐terminal domain of the protein is not required for the full virulence. Interestingly, when Mycobacterium smegmatis recombinant strain expressing PE_PGRS30 was used to infect macrophages or mice in vivo, we observed enhanced cytotoxicity and cell death, and this effect was dependent upon the PGRS domain of the protein.Taken together these results indicate that PE_PGRS30 is necessary for the full virulence of Mtb and sufficient to induce cell death in host cells by the otherwise non‐pathogenic species M. smegmatis, clearly demonstrating that PE_PGRS30 is an Mtb virulence factor.  相似文献   

19.
Mycobacterium smegmatis contains 6 homologous mce (mammalian cell entry) operons which have been proposed to encode ABC‐like import systems. The mce operons encode up to 10 different proteins of unknown function that are not present in conventional ABC transporters. We have analysed the consequences of individually deleting each of the genes of the mce4 operon of M. smegmatis, which mediates the transport of cholesterol. None of the mce4 mutants were able to grow in cholesterol suggesting that all these genes are required for its uptake and that none of them can be replaced by the homologous genes of the other mce operons. This result suggests that different mce operons do not provide redundant capabilities and that M. smegmatis, in contrast with Mycobacterium tuberculosis, is not able to use alternative systems to import cholesterol in the analysed culture conditions. Either deletion of the entire mce4 operon or single point mutations that eliminate the transport function cause a phenotype similar to the one observed in a mutant lacking all 6 mce operons suggesting a pleiotropic role for this system.  相似文献   

20.
The MtrAB signal transduction system, which participates in multiple cellular processes related to growth and cell wall homeostasis, is the only two‐component system known to be essential in Mycobacterium. In a screen for antibiotic resistance determinants in Mycobacterium smegmatis, we identified a multidrug‐sensitive mutant with a transposon insertion in lpqB, the gene located immediately downstream of mtrA–mtrB. The lpqB mutant exhibited increased cell–cell aggregation and severe defects in surface motility and biofilm growth. lpqB cells displayed hyphal growth and polyploidism, reminiscent of the morphology of Streptomyces, a related group of filamentous Actinobacteria. Heterologous expression of M. tuberculosis LpqB restored wild‐type characteristics to the lpqB mutant. LpqB interacts with the extracellular domain of MtrB, and influences MtrA phosphorylation and promoter activity of dnaA, an MtrA‐regulated gene that affects cell division. Furthermore, in trans expression of the non‐phosphorylated, inactive form of MtrA in wild‐type M. smegmatis resulted in phenotypes similar to those of lpqB deletion, whereas expression of the constitutively active form of MtrA restored wild‐type characteristics to the lpqB mutant. These results support a model in which LpqB, MtrB and MtrA form a three‐component system that co‐ordinates cytokinetic and cell wall homeostatic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号