首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbial communities play a major role in terrestrial ecosystem functioning, but the determinates of their diversity and functional interactions are not well known. In this study, we explored leaf litter fungal diversity in a diverse Panama lowland tropical forest in which a replicated factorial N, P, K and micronutrient fertilization experiment of 40 × 40 m plots had been ongoing for nine years. We extracted DNA from leaf litter samples and used fungal‐specific amplification and a 454 pyrosequencing approach to sequence two loci, the nuclear ribosomal internal transcribed spacer (ITS) region and the nuclear ribosomal large subunit (LSU) D1 region. Using a 95% sequence similarity threshold for ITS1 spacer recovered a total of 2523 OTUs, and the number of unique ITS1 OTUs per 0.5–1.0 g leaf litter sample ranged from 55 to 177. Ascomycota were the dominant phylum among the leaf litter fungi (71% of the OTUs), followed by Basidiomycota (26% of the OTUs). In contrast to our expectations based on temperate ecosystems, long‐term addition of nutrients increased, rather than decreased, species richness relative to controls. Effect of individual nutrients was more subtle and seen primarily as changes in community compositions especially at lower taxonomic levels, rather than as significant changes in species richness. For example, plots receiving P tended to show a greater similarity in community composition compared to the other nutrient treatments, the +PK, +NK and +NPK plots appeared to be more dominated by the Nectriaceae than other treatments, and indicator species for particular nutrient combinations were identified.  相似文献   

2.
云南松林次生演替阶段土壤细菌群落的变化   总被引:1,自引:0,他引:1  
土壤细菌多样性是维持森林生态系统功能的关键因子,森林演替是影响其动态变化的重要因素.研究云南松林不同演替阶段土壤细菌群落结构及其多样性的变化规律,有助于深入理解森林生态系统恢复过程的驱动机制.本研究以云南省永仁县皆伐后形成的针叶林、针阔混交林和常绿阔叶林为对象,基于Illumina Hiseq高通量测序技术,分析森林演...  相似文献   

3.
Cercozoa and Oomycota contain a huge biodiversity and important pathogens of forest trees and other vegetation. We analyzed air dispersal of these protistan phyla with an air sampler near-ground (~2 m) and in tree crowns (~25 m) of three tree species (oak, linden and ash) in a temperate floodplain forest in March (before leafing) and May (after leaf unfolding) 2019 with a cultivation-independent high-throughput metabarcoding approach. We found a high diversity of Cercozoa and Oomycota in air samples with 122 and 81 OTUs, respectively. Especially oomycetes showed a significant difference in community composition between both sampling dates. Differences in community composition between air samples in tree canopies and close to the ground were however negligible, and also tree species identity did not affect communities in air samples, indicating that the distribution of protistan propagules through the air was not spatially restricted in the forest ecosystem. OTUs of plant pathogens, whose host species did not occur in the forest, demonstrate dispersal of propagules from outside the forest biome. Overall, our results lead to a better understanding of the stochastic processes of air dispersal of protists and protistan pathogens, a prerequisite to understand the mechanisms of their community assembly in forest ecosystems.  相似文献   

4.
Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure.  相似文献   

5.
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface‐dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen‐related traits play a central role in tree composition effects on soil fauna and decomposition.  相似文献   

6.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

7.
Human activity has more than doubled the amount of nitrogen entering the global nitrogen cycle, and the boreal forest biome is a nitrogen‐limited ecosystem sensitive to nitrogen load perturbation. Although bryophyte‐associated microbes contribute significantly to boreal forest ecosystem function, particularly in carbon and nitrogen cycling, little is known about their responses to anthropogenic global change. Amplicon pyrosequencing of the ITS2 region of rDNA was used to investigate how fungal communities associated with three bryophyte species responded to increased nitrogen loads in a long‐term fertilization experiment in a boreal Picea abies forest in southern Norway. Overall, OTU richness, community composition and the relative abundance of specific ecological guilds were primarily influenced by host species identity and tissue type. Although not the primary factor affecting fungal communities, nitrogen addition did impact the abundance of specific guilds of fungi and the resulting overall community composition. Increased nitrogen loads decreased ectomycorrhizal abundance, with Amphinema, Cortinarius, Russula and Tylospora OTUs responding negatively to fertilization. Pathogen abundance increased with fertilization, particularly in the moss pathogen Eocronartium. Saprophytic fungi were both positively and negatively impacted by the nitrogen addition, indicating a complex community level response. The overshadowing of the effects of increased nitrogen loads by variation related to host and tissue type highlights the complexity of bryophyte‐associated microbial communities and the intricate nature of their responses to anthropogenic global change.  相似文献   

8.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

9.
高扬  王子祺  陈双林 《菌物学报》2021,40(2):334-347
黏菌是土壤原生生物的重要组成部分,但其群落组成与多样性格局信息目前还不全面。本研究采用18S rRNA基因高通量测序的方法,研究了宝天曼自然保护区内落叶阔叶林、针叶林和针阔混交林土壤中的亮孢黏菌多样性,并通过多元统计方法分析了其群落结构与土壤环境因子之间的关系。结果表明,30份土壤样品中共获得26个亮孢黏菌的可操作分类单元(OTUs),隶属团毛菌目Trichiales下的7个属。4个OTUs可注释到种,分别为球圆团网菌Arcyria globosa、蛇形半网菌Hemitrichia serpula、刺丝团毛菌Trichia scabra和高山团毛菌Trichia alpina。亮孢黏菌群落α多样性在不同林型间有显著差异,其中在针叶林最高,落叶阔叶林最低。不同林型土壤的亮孢黏菌群落结构也显著不同,冗余分析显示,不同林型间黏菌群落结构差异与土壤含水量、碳氮比、有效钾和有机碳显著相关,但总体土壤环境因子对群落结构差异的解释量有限,占比10.18%。本研究丰富了土壤黏菌多样性信息和生态分布理论。  相似文献   

10.
Elucidation of the potential roles of single-celled eukaryotes (protists) in ecosystem function and trophodynamics in hydrothermal vent ecosystems is reliant on information regarding their abundance, distribution and preference for vent habitats. Using high-throughput 18S rRNA gene sequencing on a diverse suite of hydrothermally influenced and background water samples, we assess the diversity and distribution of protists and identify potential vent endemics. We found that 95% of the recovered sequences belong to operational taxonomic units (OTUs) with a cosmopolitan distribution across vent and non-vent habitats. Analysis of ‘vent only’ OTUs found in more than one vent sample and co-occurrence network analysis comparing protist groups to extremophilic reference organisms suggest that the most likely vent endemics are infrequently encountered, potentially in low abundance, and belong to novel lineages, both at the phylum level and within defined clades of Rhizaria and Stramenopila. Potential endemism is inferred for relatives of known apusomonads, excavates and some clades of Syndiniales. Similarity in community composition among samples was low, indicating a strong stochastic component to protist community assembly and suggesting that rare endemics may serve as a reservoir poised to respond to changing environmental conditions in these dynamic systems.  相似文献   

11.
The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind‐exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge‐to‐snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag‐encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.  相似文献   

12.
Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses.  相似文献   

13.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

14.
Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community structure. We studied the diversity and community structure of AMF in northern hardwood forests after more than 12 years of simulated nitrogen deposition. We performed molecular analyses on maple (Acer spp.) roots targeting the 18S rDNA region using the fungal‐specific primers AM1 and NS31. PCR products were cloned and identified using restriction fragment length polymorphism (RFLP) and sequencing. N addition significantly altered the AMF community structure, and Glomus group A dominated the AMF community. Some Glomus operational taxonomic units (OTUs) responded negatively to N inputs, whereas other Glomus OTUs and an Acaulospora OTU responded positively to N inputs. The observed effect on community structure implies that AMF species associated with maples differ in their response to elevated nitrogen. Given that functional diversity exists among AMF species and that N deposition has been shown to select less beneficial fungi in some ecosystems, this change in community structure could have implications for the functioning of this type of ecosystem.  相似文献   

15.
Revealing the relationship between plants and root-associated fungi is very important in understanding diversity maintenance and community assembly in ecosystems. However, the community assembly of root-associated fungi of focal plant species along a subtropical plant species diversity gradient is less documented. Here, we examined root-associated fungal communities associated with five ectomycorrhizal (EM) plant species (Betula luminifera, Castanea henryi, Castanopsis fargesii, C. sclerophylla, and Quercus serrate) in a Chinese subtropical woody plant species diversity (1, 2, 4, 8, 16 and 24 species) experiment, using paired-end Illumina MiSeq sequencing of the ITS2 region. In total, we detected 1933 root-associated fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. Plant identity had a significant effect on total and saprotrophic fungal OTU richness, but plant species diversity level had a significant effect on saprotrophic and pathogenic fungal OTU richness. The community composition of total, saprotrophic and EM fungi was structured by plant identity and plant species diversity level. However, the community composition of pathogenic fungi was only shaped by plant identity. This study highlights that plant identity has a stronger effect on the root-associated fungal community than plant species diversity level in a diverse subtropical forest ecosystem.  相似文献   

16.
Methanogenic archaea are ubiquitous in peat soils; however, their diversity and distributions within and among peatland ecosystems are not well known. We used comprehensive clone libraries of 16S rRNA gene sequences to investigate spatial patterns in diversity (richness, evenness of taxa) and composition (taxonomic, phylogenetic) of the methanogenic community in six peatlands arrayed 775?km from eastern Ontario, Canada to West Virginia, USA. Five sites were Sphagnum (moss) and shrub dominated; one site was sedge dominated; and, potential rates of methane (CH4) production ranged from 15 to 450?nmol/g?day. The gradient allowed us to examine influences of site conditions, site history, and climate on community composition. The region had representatives of methanogens from four taxonomic orders. We observed 29 operationally defined units (OTUs) based on >97% sequence identity. One OTU accounted for 43% of all clones, whereas 15 OTUs were rare with <1% of the total number of clones. The number of OTUs per site ranged from 4 to 21, and statistical analysis suggested diversity of 4–43 per site. Eighteen of the OTUs were endemic to one site; albeit, most endemics occurred in the sedge dominated site. One OTU was cosmopolitan, occurring in all six sites. We found a positive relationship between methanogen diversity and rates of CH4 production per site (Pearson r?=?0.93). Turnover in community composition between sites was weakly related to geographic distance between sites, whereas variation in soil pH and annual temperature played larger roles. About 50% of the variation in community composition was unexplained by distance, pH, mean climate, and site age. We conclude that methanogen diversity in peatlands of the central Appalachian region is shaped by present-day environmental conditions, suggesting an influence of impending climatic and environmental changes.  相似文献   

17.
钟娇娇  陈杰  陈倩  姬柳婷  康冰 《生态学报》2019,39(1):277-285
采用多元回归树(MRT)对秦岭山地天然次生林群落进行数量分类,采用典范对应分析(CCA)进行排序,分析了秦岭山地天然次生林群落物种多样性沿海拔梯度的变化规律。结果表明:(1) 275个样方共有种子植物195种,隶属61科128属。乔、灌、草3个层次物种多样性变化沿海拔梯度的变化趋势基本一致,呈单峰模型;(2)经交叉验证认为秦岭山地天然次生林群落可分为2类,Ⅰ冬瓜杨(Populus purdomii)+陇东海棠(Malus kansuensis)+蛇莓(Duchesnea indica)群落,Ⅱ锐齿槲栎(Quercus aliena var. acuteserrata)+黄栌(Cotinus coggygria)+茜草(Rubia cordifolia)群落;(3) CCA排序结果揭示了群落生境的分布范围,反映出生态轴的排序意义,较好地反映秦岭山地天然次生林群落与环境因子的关系,其结果表明,海拔、坡向、凋落层厚度和干扰情况4个变量对该地区次生林群落的分布有较大的影响。  相似文献   

18.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

19.
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross‐site studies have indicated that ecosystem regime shifts, associated with long‐term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well‐constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.  相似文献   

20.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号