首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A switch I mutant of Cdc42 exhibits less conformational freedom   总被引:1,自引:0,他引:1  
Cdc42 is a Ras-related small G-protein and functions as a molecular switch in signal transduction pathways linked with cell growth and differentiation. It is controlled by cycling between GTP-bound (active) and GDP-bound (inactive) forms. Nucleotide binding and hydrolysis are modulated by interactions with effectors and/or regulatory proteins. These interactions are centralized in two relatively flexible "Switch" regions as characterized by internal dynamics on multiple time scales [Loh, A. P., et al. (2001) Biochemistry 40, 4590-4600], and this flexibility may be essential for protein interactions. In the Switch I region, Thr(35) seems to be critical for function, as it is completely invariant in Ras-related proteins. To investigate the importance of conformational flexibility in Switch I of Cdc42, we mutated threonine to alanine, determined the solution structure, and characterized the backbone dynamics of the single-point mutant protein, Cdc42(T35A). Backbone dynamics data suggest that the mutation changes the time scale of the internal motions of several residues, with several resonances not being discernible in wild-type Cdc42 [Adams, P. D., and Oswald, R. E. (2007) Biomol. NMR Assignments 1, 225-227]. The mutation does not appear to affect the thermal stability of Cdc42, and chymotrypsin digestion data further suggest that changes in the conformational flexibility of Switch I slow proteolytic cleavage relative to that of the wild type. In vitro binding assays show less binding of Cdc42(T35A), relative to that of wild type, to a GTPase binding protein that inhibits GTP hydrolysis in Cdc42. These results suggest that the mutation of T(35) leads to the loss of conformational freedom in Switch I that could affect effector-regulatory protein interactions.  相似文献   

2.
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the “insert region” (residues 122–135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.  相似文献   

3.
RabGTPase is a member of the Ras superfamily of small GTPases, which share a GTP-binding pocket containing highly conserved motifs that promote GTP hydrolysis. In Arabidopsis, the RabA group, which corresponds to the Rab_(11) group in animals, functions in the recycling of endosomes that control docking and fusion during vesicle transport. However, their molecular mechanisms remain unknown. In this study, we determined the crystal structures of the GDP-bound inactive form and both GppNHp-and GTP-bound active forms of RabA1a, at resolutions of 2.8, 2.6, and 2.6 A?,respectively. A bound sulfate ion in the active site of the GDP-bound structure stabilized Switch Ⅱ by bridging the interaction between a magnesium ion and Arg74.Comparisons of the two states of RabA1a with Rab_(11) proteins revealed clear differences in the Switch Ⅰ and Ⅱ loops. These results suggested that conformational change of the Switch regions of RabA1a, derived by GTP or GDP binding, could maintain subcellular membrane traffic through the specific interaction of effector molecules.  相似文献   

4.
5.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

6.
Salmonella spp. utilize a specialized protein secretion system to deliver a battery of effector proteins into host cells. Several of these effectors stimulate Cdc42- and Rac1-dependent cytoskeletal changes that promote bacterial internalization. These potentially cytotoxic alterations are rapidly reversed by the effector SptP, a tyrosine phosphatase and GTPase activating protein (GAP) that targets Cdc42 and Rac1. The 2.3 A resolution crystal structure of an SptP-Rac1 transition state complex reveals an unusual GAP architecture that mimics host functional homologs. The phosphatase domain possesses a conserved active site but distinct surface properties. Binding to Rac1 induces a dramatic stabilization in SptP of a four-helix bundle that makes extensive contacts with the Switch I and Switch II regions of the GTPase.  相似文献   

7.
IQGAP1 contains a domain related to the catalytic portion of the GTPase-activating proteins (GAPs) for the Ras small G proteins, yet it has no RasGAP activity and binds to the Rho family small G proteins Cdc42 and Rac1. It is thought that IQGAP1 is an effector of Rac1 and Cdc42, regulating cell-cell adhesion through the E-cadherin-catenin complex, which controls formation and maintenance of adherens junctions. This study investigates the binding interfaces of the Rac1-IQGAP1 and Cdc42-IQGAP1 complexes. We mutated Rac1 and Cdc42 and measured the effects of mutations on their affinity for IQGAP1. We have identified similarities and differences in the relative importance of residues used by Rac1 and Cdc42 to bind IQGAP1. Furthermore, the residues involved in the complexes formed with IQGAP1 differ from those formed with other effector proteins and GAPs. Relatively few mutations in switch I of Cdc42 or Rac1 affect IQGAP1 binding; only mutations in residues 32 and 36 significantly decrease affinity for IQGAP1. Switch II mutations also affect binding to IQGAP1 although the effects differ between Rac1 and Cdc42; mutation of either Asp-63, Arg-68, or Leu-70 abrogate Rac1 binding, whereas no switch II mutations affect Cdc42 binding to IQGAP1. The Rho family "insert loop" does not contribute to the binding affinity of Rac1/Cdc42 for IQGAP1. We also present thermodynamic data pertaining to the Rac1/Cdc42-RhoGAP complexes. Switch II contributes a large portion of the total binding energy to these complexes, whereas switch I mutations also affect binding. In addition we identify "cold spots" in the Rac1/Cdc42-RhoGAP/IQGAP1 interfaces. Competition data reveal that the binding sites for IQGAP1 and RhoGAP on the small G proteins overlap only partially. Overall, the data presented here suggest that, despite their 71% identity, Cdc42 and Rac1 appear to have only partially overlapping binding sites on IQGAP1, and each uses different determinants to achieve high affinity binding.  相似文献   

8.
Ras and Rap proteins are closely related small GTPases. Whereas Ras is known for its role in cell proliferation and survival, Rap1 is predominantly involved in cell adhesion and cell junction formation. Ras and Rap are regulated by different sets of guanine nucleotide exchange factors and GTPase-activating proteins, determining one level of specificity. In addition, although the effector domains are highly similar, Rap and Ras interact with largely different sets of effectors, providing a second level of specificity. In this review, we discuss the regulatory proteins and effectors of Ras and Rap, with a focus on those of Rap.Ras-like small G-proteins are ubiquitously expressed, conserved molecular switches that couple extracellular signals to various cellular responses. Different signals can activate GEFs2 that induce the small G-protein to switch from the inactive, GDP-bound state to the active, GTP-bound state. This induces a conformational change that allows downstream effector proteins to bind specifically to and be activated by the GTP-bound protein to mediate diverse biological responses. Small G-proteins are returned to the GDP-bound state by hydrolyzing GTP with the help of GAPs. Ras (Ha-Ras, Ki-Ras, and N-Ras) and Rap proteins (Rap1A, Rap1B, Rap2A, Rap2B, and Rap2C) have similar effector-binding regions that interact predominantly with RA domains or the structurally similar RBDs present in a variety of different proteins. Both protein families operate in different signaling networks. For instance, Ras is central in a network controlling cell proliferation and cell survival, whereas Rap1 predominantly controls cell adhesion, cell junction formation, cell secretion, and cell polarity. These different functions are reflected in a largely different set of GEFs and GAPs. Also the downstream effector proteins operate in a selective manner in either one of the networks.  相似文献   

9.
The GTP-binding protein Ras plays a central role in the regulation of various cellular processes, acting as a molecular switch that triggers signaling cascades. Only Ras bound to GTP is able to interact strongly with effector proteins like Raf kinase, phosphatidylinositol 3-kinase, and RalGDS, whereas in the GDP-bound state, the stability of the complex is strongly decreased, and signaling is interrupted. To determine whether this process is only controlled by the stability of the complex, we used computer-aided protein design to improve the interaction between Ras and effector. We challenged the Ras·Raf complex in this study because Raf among all effectors shows the highest Ras affinity and the fastest association kinetics. The proposed mutations were characterized as to their changes in dynamics and binding strength. We demonstrate that Ras-Raf interaction can only be improved at the cost of a loss in specificity of Ras·GTP versus Ras·GDP. As shown by NMR spectroscopy, the Raf mutation A85K leads to a shift of Ras switch I in the GTP-bound as well as in the GDP-bound state, thereby increasing the complex stability. In a luciferase-based reporter gene assay, Raf A85K is associated with higher signaling activity, which appears to be a mere matter of Ras-Raf affinity.  相似文献   

10.
The function of the Ras guanine nucleotide exchange factor Ras-GRF/cdc25(Mn) is subject to tight regulatory processes. We have recently shown that the activation of the Ras/MAPK pathway by Ras-GRF is controlled by the Rho family GTPase Cdc42 through still unknown mechanisms. Here, we report that retaining Cdc42 in its GDP-bound state by overexpressing Rho-GDI inhibits Ras-GRF-mediated MAPK activation. Conversely, Ras-GRF basal and LPA- or ionomycin-stimulated activities were unaffected by a constitutively active GTP-bound Cdc42. Moreover, the Cdc42 downstream effectors MLK3, ACK1, PAK1, and WASP had no detectable influence on Ras-GRF-mediated MAPK activation. In contrast, promoting GDP release from Cdc42 with the Rho family GEF Dbl or with ionomycin suppressed the restraint exerted by Cdc42 on Ras-GRF activity. We conclude that Cdc42-GDP inhibits Ras-GRF-induced MAPK activation, but neither Cdc42-GTP nor the Cdc42 downstream effectors affect Ras-GRF performance. Interestingly, the loss of the GDP-bound state by Cdc42 abolishes its inhibitory effects on Ras-GRF function. These results suggest that the Cdc42 mechanism of action may not be solely restricted to activation of downstream signaling cascades when GTP-loaded. Furthermore, the GDP-bound form may be acting as an inhibitory molecule down-modulating parallel signaling routes such as the Ras/MAPK pathway.  相似文献   

11.
The GTP hydrolytic (GTPase) reaction terminates signaling by both large (heterotrimeric) and small (Ras-related) GTP-binding proteins (G proteins). Two residues that are necessary for GTPase activity are an arginine (often called the "arginine finger") found either in the Switch I domains of the alpha subunits of large G proteins or contributed by the GTPase-activating proteins of small G proteins, and a glutamine that is highly conserved in the Switch II domains of Galpha subunits and small G proteins. However, questions still exist regarding the mechanism of the GTPase reaction and the exact role played by the Switch II glutamine. Here, we have characterized the GTP binding and GTPase activities of mutants in which the essential arginine or glutamine residue has been changed within the background of a Galpha chimera (designated alpha(T)*), comprised mainly of the alpha subunit of retinal transducin (alpha(T)) and the Switch III region from the alpha subunit of G(i1). As expected, both the alpha(T)*(R174C) and alpha(T)*(Q200L) mutants exhibited severely compromised GTPase activity. Neither mutant was capable of responding to aluminum fluoride when monitoring changes in the fluorescence of Trp-207 in Switch II, although both stimulated effector activity in the absence of rhodopsin and Gbetagamma. Surprisingly, each mutant also showed some capability for being activated by rhodopsin and Gbetagamma to undergo GDP-[(35)S]GTPgammaS exchange. The ability of the mutants to couple to rhodopsin was not consistent with the assumption that they contained only bound GTP, prompting us to examine their nucleotide-bound states following their expression and purification from Escherichia coli. Indeed, both mutants contained bound GDP as well as GTP, with 35-45% of each mutant being isolated as GDP-P(i) complexes. Overall, these findings suggest that the R174C and Q200L mutations reveal Galpha subunit states that occur subsequent to GTP hydrolysis but are still capable of fully stimulating effector activity.  相似文献   

12.
Guanine nucleotide binding proteins (GNB-proteins) play an essential role in cellular signaling, acting as molecular switches, cycling between the inactive, GDP-bound form and the active, GTP-bound form. It has been shown that conformational equilibria also exist within the active form of GNB-proteins between conformational states with different functional properties. Here we present (31)P NMR data on ADP ribosylation factor 1 (Arf1), a GNB-protein involved in Golgi traffic, promoting the coating of secretory vesicles. To investigate conformational equilibria in active Arf1, the wild type and switch I mutants complexed with GTP and a variety of commonly used GTP analogues, namely, GppCH(2)p, GppNHp, and GTPγS, were analyzed. To gain deeper insight into the conformational state of active Arf1, we titrated with Cu(2+)-cyclen and GdmCl and formed the complex with the Sec7 domain of nucleotide exchange factor ARNO and an effector GAT domain. In contrast to the related proteins Ras, Ral, Cdc42, and Ran, from (31)P NMR spectroscopic view, Arf1 exists predominantly in a single conformation independent of the GTP analogue used. This state seems to correspond to the so-called state 2(T) conformation, according to Ras nomenclature, which is interacting with the effector domain. The exchange of the highly conserved threonine in position 48 with alanine led to a shift of the equilibrium toward a conformational state with typical properties obtained for state 1(T) in Ras, such as interaction with guanine nucleotide exchange factors, a lower affinity for nucleoside triphosphates, and greater sensitivity to chaotropic agents. In active Arf1(wt), the effector interacting conformation is strongly favored. These intrinsic conformational equilibria of active GNB-proteins could be a fine-tuning mechanism of regulation and thereby an interesting target for the modulation of protein activity.  相似文献   

13.
IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic “arginine finger” seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099–1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42·GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.The small GTPase Ras functions as a binary switch in cell signaling processes. When bound to GTP, Ras is able to interact with effector proteins, including Raf kinase, and alter their activities. Ras signaling is terminated when bound GTP is hydrolyzed to GDP and inorganic phosphate. The basal rate of GTP hydrolysis on Ras is quite slow (∼1.2 × 10–4 s–1), but this rate of hydrolysis can be enhanced ∼105-fold by interaction with a GTPase-activating protein (GAP)2 (1). Several RasGAPs have been identified to date including p120 RasGAP and neurofibromin (NF1). The Rho family of Ras-related small GTPases also function as binary switches in cell signaling processes. Whereas the intrinsic rate of GTP hydrolysis on Rho proteins is faster than Ras, this rate can also be stimulated by interaction with a RhoGAP. Examination of the structures of the GAP domains of p120RasGAP (2), neurofibromin (3), SynGAP (4), and the GAP domains from the RhoGAPs p50 RhoGAP and the Bcr homology domain of phosphatidylinositol 3-kinase (5, 6) indicates that although ostensibly different, these all-helical domains are structurally related (7).IQGAP1 was discovered by chance during an attempt to isolate novel matrix metalloproteinases (8). Analysis reveals that the protein contains several discrete domains and motifs including a region containing four isoleucine- and glutamine-rich motifs (IQ repeats) and a region with sequence homology to the Ras-specific GAP domains of p120RasGAP, NF1, and SynGAP (24, 8). Subsequently, two homologs, IQGAP2 and IQGAP3, have been discovered. The IQ repeats have been shown to mediate binding to calmodulin and calmodulin-like proteins (e.g. S100, myosin essential light chain), whereas the GAP-related domain (GRD) does not appear to bind to Ras but instead is necessary for binding to the Rho family GTPases Cdc42 and Rac1, primarily in their active forms (911). However, instead of accelerating hydrolysis of GTP, IQGAP1 preserves the activated states of Cdc42 and Rac1 to the extent that overexpression of IQGAP1 in cells increases the levels of active GTPase (12). Because IQGAP1 expression increases the level of activated Cdc42, initially there was some confusion as to whether the protein might not represent a novel guanine nucleotide exchange factor. However it now appears that IQGAP1 is an effector of Cdc42 and Rac1 and preserves their activated states by tightly binding to the GTPases and stabilizing them in a conformation not conducive to GTP hydrolysis. IQGAP1 appears to be such an important effector for Cdc42 that abrogation of binding to IQGAP1 not only reduces the levels of active Cdc42, it also reduces membrane-localized Cdc42 and the cellular response to bradykinin (12).A growing body of evidence implicates IQGAP1 in carcinogenesis. Expression of IQGAP1 increases during the transition from a minimally to a highly metastastic form of melanoma, and IQGAP1 has been found to be overexpressed in ovarian, breast, lung, and colorectal cancers (1317). In vitro, overexpressed IQGAP1 enhances cell motility and invasiveness in a process that requires Cdc42 and Rac (18). β-Catenin is one of the many binding partners of IQGAP1 identified to date. IQGAP1 has been shown to bind to β-catenin and interfere with β-catenin binding to α-catenin, an interaction necessary for stable cell-cell adhesion (19). Another study found that IQGAP2 knock-out mice overexpress IQGAP1 and developage-dependent liver cancer and apoptosis (20).To better understand how a protein domain homologous to others that accelerate GTP hydrolysis can function as an effector and preserve the GTP-bound state, we have determined the x-ray structure of the IQGAP1 GRD. Despite low sequence identity, the GRD structure is quite similar to the GAP domains of p120, neurofibromin, and SynGAP; however, unlike those domains, the GRD possesses a conserved threonine in place of the catalytic arginine finger and has a 31-residue insertion that projects from one end of the molecule. Using the coordinates of Ras·GDP·AlF3 in complex with the GAP domain of p120, we built a model of Cdc42·GTP bound to the GRD. The model indicates that a steric clash between the conserved Thr1046 and the phosphate-binding loop of Cdc42 and other subtle changes within the active site would likely preclude nucleotide hydrolysis. Sequence conservation mapped to the surface of the GRD indicates that the surface with the highest degree of conservation overlaps with the surface that makes contacts to Cdc42 in the model.  相似文献   

14.
The GTPase Cdc42p is essential for polarity establishment in animals and fungi.1 Human Cdc42p can functionally replace yeast Cdc42p,2 indicating a high degree of evolutionary conservation. Current models of Cdc42p action generally follow the signaling paradigm established for Ras, in which receptors responding to an initiating stimulus cause guanine nucleotide exchange factors (GEFs) to trigger GTP-loading of Ras, leading to engagement of downstream effectors and ensuing cell proliferation. Key support for the Ras paradigm came from the finding that oncogenic forms of Ras, unable to hydrolyze GTP and therefore constitutively GTP-bound, mimicked the effect of constitutive signaling by the upstream receptors even in the absence of stimuli. Attempts to assess whether or not this paradigm is valid for Cdc42p-induced polarization of yeast cells have yielded conflicting results.3-6 Here, we discuss the available information on this issue and conclude that unlike Ras signaling, Cdc42p directed polarity establishment additionally requires cycling between GTP- and GDP-bound forms. We suggest that such cycling is critical for a little-studied “function” of Cdc42p: its ability to designate a unique portion of the cell cortex to become the polarization site, and to become concentrated at that site.  相似文献   

15.
A P Loh  W Guo  L K Nicholson  R E Oswald 《Biochemistry》1999,38(39):12547-12557
Cdc42Hs, a member of the Ras superfamily of GTP-binding proteins, initiates a cascade that begins with the activation of several kinases, including p21-activated kinase (PAK). We have previously determined the structure of Cdc42Hs and found that the regions involved in effector (Switch I) and regulator (Switch II) actions are partially disordered [Feltham, J. L., et al. (1997) Biochemistry 36, 8755-8766]. Recently, we used a 46-amino acid fragment of PAK (PBD46) to define the binding surface on Cdc42Hs, which includes the beta2 strand and a portion of Switch I [Guo, W., et al. (1998) Biochemistry 37, 14030-14037]. Here we describe the backbone dynamics of three constructs of [(15)N]Cdc42Hs (GDP-, GMPPCP-, and GMPPCP- and PBD46-bound) using (15)N-(1)H NMR measurements of T(1), T(1)(rho), and the steady-state NOE at three magnetic field strengths. Residue-specific values of the generalized order parameters (S(s)(2) and S(f)(2)), local correlation time (tau(e)), and exchange rate (R(ex)) were obtained using the Lipari-Szabo model-free formalism. Residues in Switch I were found to exhibit high-amplitude (low-order) motions on a nanosecond time scale, whereas those in Switch II experience low-amplitude motion on the nanosecond time scale and chemical (conformational) exchange on a millisecond time scale. The Insert region of Cdc42Hs-GDP exhibits high-order, nanosecond motions; the time scale of motion in the Insert is reduced in Cdc42Hs-GMPPCP and Cdc42Hs-PBD46. Overall, significant flexibility was observed mainly in the regions of Cdc42Hs that are involved in protein-protein interactions (Switch I, Switch II, and Insert), and flexibility was reduced upon interaction with a protein ligand. These results suggest that protein flexibility is important for high-affinity binding interactions.  相似文献   

16.
Fidyk NJ  Cerione RA 《Biochemistry》2002,41(52):15644-15653
Cdc42, a member of the Rho family of GTP-binding proteins, has been implicated in a variety of biological activities, including the organization of the actin cytoskeleton, changes in cell morphology and motility, intracellular trafficking, cell cycle progression, and cellular transformation. The cycling of Cdc42 between its on (GTP-bound) and off (GDP-bound) states is essential for its stimulation of cell growth and transformation, with an important aspect of this cycle being the regulation of the GTP hydrolytic activity of Cdc42 by its GTPase-activating protein (Cdc42GAP). On the basis of the structural determinations of the Cdc42-Cdc42GAP complex, as well as the Ras-RasGAP complex, it has been proposed that an arginine residue provided by the GAP (called the "arginine finger") stabilizes charges developing on the guanine nucleotide during the transition state for GTP hydrolysis and is an important contributor to GAP-stimulated catalysis. However, the 85 kDa regulatory subunit (p85) of the phosphoinositide 3-kinase (PI-3K) is homologous with the Cdc42GAP and contains the essential arginine residue, but is ineffective as a GAP. This argues that the introduction of the arginine finger is insufficient for GAP activity and that the GAP must fulfill an additional function, one possibility being the engagement and stabilization of the conformationally sensitive switch regions of Cdc42. In the study presented here, we have tested this idea by examining three residues within the Cdc42GAP, which are missing in the GAP homology domain of the 85 kDa regulatory subunit (p85) of the PI 3-kinase and are involved in specific interactions with switch domain residues of Cdc42. We show that the mutation of all three residues, as well as individual mutations of each of these residues, yields GAPs that are defective in stimulating GTP hydrolysis. We further demonstrate that the switch I residue tyrosine 32 plays an important role in GAP interactions and in the regulation of both intrinsic and GAP-stimulated GTP hydrolysis. Taken together, these findings indicate that stabilizing the switch domains of GTP-binding proteins is an important part of GAP-stimulated catalysis, and that the inability of p85 to participate in these interactions may at least in part explain its ineffectiveness as a GAP.  相似文献   

17.
Tu SS  Wu WJ  Yang W  Nolbant P  Hahn K  Cerione RA 《Biochemistry》2002,41(41):12350-12358
Cdc42 is a small GTP-binding protein which has been implicated in a number of cellular activities, including cell morphology, motility, cell-cycle progression, and malignant transformation. While GTPase-defective forms of Cdc42 inhibit cell growth, a mutation [Cdc42(F28L)] that allows the constitutive exchange of GDP for GTP and is GTPase-competent induces cellular transformation. These results suggest that Cdc42 must cycle between its GTP- and GDP-bound states to stimulate cell growth. In attempting to design Cdc42 molecules with more potent transforming activity, we set out to generate other types of Cdc42 mutants capable of constitutive GDP-GTP exchange. Here, we describe one such mutant, generated by changing a conserved aspartic acid residue at position 118 to an asparagine. The Cdc42(D118N) protein exchanges GDP for GTP more rapidly than wild-type Cdc42, but significantly more slowly than the Cdc42(F28L) mutant. Despite its slower rate of activation, the Cdc42(D118N) mutant is more potent at inducing cellular transformation than the Cdc42(F28L) protein, and causes a significant loss in actin stress fibers, reminiscent of what is observed with fibroblasts transformed by oncogenic Ras mutants. Effector-loop mutations made within the D118N background inhibit Cdc42-induced transformation and Cdc42-mediated antiapoptotic (survival) activity to similar extents. In addition, mutating aspartic acid 121 (to asparagine), which forms part of a caspase cleavage site (DLRD, residues 118-121 of Cdc42), in combination with the F28L mutation generates a Cdc42 molecule [Cdc42(F28L/D121N)] with transforming activity significantly stronger than that of Cdc42(F28L). Thus, mutations that combine some capacity for cycling between the GTP- and GDP-bound states with increased survival against apoptotic signals yield Cdc42 molecules with the maximum capability for inducing cellular transformation.  相似文献   

18.
Cycling between a GTP bound "on" state and a GDP bound "off" state, guanine nucleotide-binding (GNB) proteins act as molecular switches. The switching process and the interaction with effectors, GTPase-activating proteins, and guanosine nucleotide-exchange factors is accompanied by pronounced conformational changes of the switch regions of the GNB proteins. The aim of the present contribution is to correlate conformational changes observed by liquid-state NMR with solid-state (31)P NMR data and with the results of X-ray crystallography. Crystalline wild-type Ras complexed with GTP analogs such as GppCH(2)p and GppNHp could be prepared. At low temperatures, two different signals were found for the gamma-phosphate group of GppNHp bound to wild-type Ras. This behavior indicates the existence of two different conformations of the molecule in the crystalline state as it is found in solution but not by X-ray crystallography. In contrast to the GppNHp complex, the two separate gamma-phosphate signals could not be observed for GppCH(2)p bound to wild-type Ras. However, an increasing linewidth at low temperature indicates the presence of an exchange process. The results obtained for the wild-type protein are compared with the behavior of GppNHp complexes of the effector loop mutants Ras(T35S) and Ras(T35A). These mutants prefer a conformation similar to the GDP bound "off" state.  相似文献   

19.
We recently identified BNIP-2, a previously cloned Bcl-2- and E1B-associated protein, as a putative substrate of the FGF receptor tyrosine kinase and showed that it possesses GTPase-activating activity toward Cdc42 despite the lack of homology to previously described catalytic domains of GTPase-activating proteins (GAPs). BNIP-2 contains many arginine residues at the carboxyl terminus, which includes the region of homology to the noncatalytic domain of Cdc42GAP, termed BNIP-2 and Cdc42GAP homology (BCH) domain. Using BNIP-2 glutathione S-transferase recombinants, it was found that its BCH bound Cdc42, and contributed the GAP activity. This domain was predicted to fold into alpha-helical bundles similar to the topology of the catalytic GAP domain of Cdc42GAP. Alignment of exposed arginine residues in this domain helped to identify Arg-235 and Arg-238 as good candidates for catalysis. Arg-238 matched well to the arginine "finger" required for enhanced GTP hydrolysis in homodimerized Cdc42. Site-directed mutagenesis confirmed that an R235K or R238K mutation severely impaired the BNIP-2 GAP activity without affecting its binding to Cdc42. From deletion studies, a region adjacent to the arginine patch ((288)EYV(290) on BNIP-2) and the Switch I and Rho family-specific "Insert" region on Cdc42 are involved in the binding. The results indicate that the BCH domain of BNIP-2 represents a novel GAP domain that employs an arginine patch motif similar to that of the Cdc42-homodimer.  相似文献   

20.
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号