首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of phytochrome in stomatal movement in Commelina communis L. is indicated by the following observations: 1) Short irradiation with red or blue light causes opening, of isolated stomata and swelling of guard cell protoplasts. This is reversed by subsequent far red irradiation. 2) In a similar way, stomatal response to prolonged irradiation with red or blue light is decreased by concomitant far red irradiation. 3) Pretreatment with filipin, which interferes with phytochrome binding to membranes, decreases stomatal opening in red and blue light. The stomatal responses to blue and red light are modified by DCMU, N2, CO2-enriched atmosphere, and CO2-free air, which are known to affect, among other processes, chlorophyll fluorescence. Increased chlorophyll fluorescence by DCMU, N2 and CO2-enriched atmosphere enhanced stomatal opening in blue light and inhibited it in red light. CO2-free air, which decreases chlorophyll fluorescence, had the opposite effect.  相似文献   

2.
Abstract In normal air, illumination with a low level of blue or red light (40 μmol m?2 s?1) did not induce stomatal opening in maize plantlets. In CO2-free air, 40 μmol m?2 s?1 of blue or red light promoted an enhancement in stomatal opening. At the same quantum flux, blue light was more efficient than red light and stomatal closure occurred more rapidly with a significantly shorter lag phase after blue light. Anoxia inhibited light-dependent stomatal opening, even under 320 μmol m?2 s?1 illumination. However, after 60 min of illumination with 40 μmol m?2 s?1 of blue light in anoxia, transient stomatal opening was observed when the plant was returned to darkness and normal air. This transient stomatal opening was weaker after pretreatment with red light. We conclude that a blue-light-dependent process induced under anoxia leads to stomatal opening provided oxygen is present. Possible mechanisms associated with blue-light-effect and the nature of the oxygen-consuming processes are discussed.  相似文献   

3.
A. Schwartz  E. Zeiger 《Planta》1984,161(2):129-136
The supply of energy for stomatal opening was investigated with epidermal peels of Commelina communis L. and Vicia faba L., under white, blue and red irradiation or in darkness. Fluencerate response curves of stomatal opening under blue and red light were consistent with the operation of two photosystems, one dependent on photosynthetic active radiation (PAR) and the other on blue light, in the guard cells. The PAR-dependent system was 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-sensitive and KCN-resistant and showed a relatively high threshold irradiance for its activation; its activity was most prominent at moderate to high irradiances. The blue-light-dependent photosystem was KCN-sensitive, was active at low irradiances, and interacted with the PAR-dependent photosystem at high blue irradiances. Stomatal opening in darkness, caused by CO2-free air, fusicoccin or high KCl concentrations, was KCN-sensitive and DCMU-resistant. These data indicate that stomatal opening in darkness depends on oxidative phosphorylation for the supply of high-energy equivalents driving proton extrusion. Light-dependent stomatal opening appears to require photophosphorylation from guard-cell chloroplasts and the activation of the blue-light photosystem which could rely either on oxidative phosphorylation or a specific, membrane-bound electron-transport carrier.Abbreviations DCMU 3(3,4-dichlorophenyl)-1-1-dimethylurea - FC fusicoccin - KCN potassium cyanide - PAR photosynthetic active radiation - WL white light  相似文献   

4.
The effect of blue light on energy levels in epidermal strips   总被引:1,自引:0,他引:1  
Red light applied together with blue enhanced stomatal opening in epidermal strips of Commelina communis L. more than red light alone. In red light, stomatal opening was enhanced by exogenously applied ATP and was inhibited by 3-(3,4-dichlorophe-nyl)-l,l-dimethylurea (DCMU), while in the presence of blue light external ATP was almost without effect, and DCMU stimulated stomatal opening. Blue light increased the ATP levels in the epidermal strips. DCMU diminished the amount of ATP in both red light and red + blue light treatments, but did not abolish the stimulatory effect of blue light. Blue light also stimulated the respiration rate of the epidermal strips. Rotenone, which inhibited stomatal opening and respiration rate, abolished the effect of blue light in both processes. These results imply that blue light increases the ATP levels by stimulation of oxidative phosphorylation.  相似文献   

5.
Reversal of blue light-stimulated stomatal opening by green light   总被引:3,自引:0,他引:3  
Blue light-stimulated stomatal opening in detached epidermis of Vicia faba is reversed by green light. A 30 s green light pulse eliminated the transient opening stimulated by an immediately preceding blue light pulse. Opening was restored by a subsequent blue light pulse. An initial green light pulse did not alter the response to a subsequent blue light pulse. Reversal also occurred under continuous illumination, with or without a saturating red light background. The magnitude of the green light reversal depended on fluence rate, with full reversal observed at a green light fluence rate twice that of the blue light. Continuous green light given alone stimulated a slight stomatal opening, and had no effect on red light-stimulated opening. An action spectrum for the green light effect showed a maximum at 540 nm and minor peaks at 490 and 580 nm. This spectrum is similar to the action spectrum for blue light-stimulated stomatal opening, red-shifted by about 90 nm. The carotenoid zeaxanthin has been implicated as a photoreceptor for the stomatal blue light response. Blue/green reversibility might be explained by a pair of interconvertible zeaxanthin isomers, one absorbing in the blue and the other in the green, with the green absorbing form being the physiologically active one.  相似文献   

6.
Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations – while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem–epidermis water supply.  相似文献   

7.
Abaxial and adaxial stomatal responses to light of differentwavelengths and to phenylacetic acid (PAA), a molecule knownto form complexes with irradiated flavins, were examined onisolated epidermes of Commelina communis L. Blue light was superiorto red and green in promoting opening. Potassium accumulationand malate production were common to both abaxial and adaxialstomatal cells, but the photosensitivity was markedly higherin the former than in the latter. PAA suppressed opening andpotassium accumulation in guard cells, but hardly affected thelevel of epidermal malate; CO2-free air failed to reverse thesesuppressions. The PAA-effect was more substantial in blue lightthan in red, green or darkness; thus, a flavin photoreceptoris indicated. Because of the overall effect of PAA under allconditions it is suggested that, in addition to its interactionwith blue light reception, PAA also has a more general effecton guard cells.  相似文献   

8.
Red and blue light triggered the opening of isolated stomata of Pisum sativum L. cv. Peleg Alvador, Vicia faba L. (unknown cultivar) and Pelargonium sp. The stimulatory effect of short irradiation with red or blue light was reversed by a subsequent short irradiation with far-red light. In Pisum the stimulatory effect of a continuous irradiation with red or blue light was also abolished by a concomitant far-red light. In leaf pieces of P. sativum blue light was more effective than red, but not in isolated guard cells. In the presence of mesophyll, DCMU inhibited stomatal opening in red light more than in blue, and thus increased the relative response to blue light. This was less evident in isolated guard cells.  相似文献   

9.
Effect of Colored Light on Stomatal Opening Rates of Vicia faba L   总被引:3,自引:2,他引:1       下载免费PDF全文
The average opening rate of Vicia faba L. stomata was determined over an initial 20-minute light period following darkness. Nonsaturating intensities of broad band red and blue light had similar quantum effectiveness for the promotion of opening, whereas broad band green was about 40% and far red about 5% as effective. The opening rates under saturating red, green, and blue light were the same. Net photosynthesis was measured under various intensities of the same red, green, and blue light spectra. Red and blue light were equally efficient in causing photosynthesis, whereas green was 60% as effective. The light compensation points for the three colors were at higher intensities than those which saturated the opening rate response. These data suggest that only a single pigment system, probably the photosynthetic pigments, is responsible for initiating the light-induced opening response in V. faba stomata.  相似文献   

10.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   

11.
Recent studies have shown that blue light-specific stomatal opening is reversed by green light and that far-red light can be used to probe phytochrome-dependent stomatal movements. Here, blue-green reversibility and far-red light were used to probe the stomatal responses of the npq1 mutant and the phot1 phot2 double mutant of Arabidopsis. In plants grown at 50 micromol m-2 s-1, red light (photosynthetic)-mediated opening in isolated stomata from wild type (WT) and both mutants saturated at 100 micromol m-2 s-1. Higher fluence rates caused stomatal closing, most likely due to photo-inhibition. Blue light-specific opening, probed by adding blue light (10 micromol m-2 s-1) to a 100 micromol m-2 s-1 red background, was found in WT, but not in npq1 or phot1 phot2 double mutant stomata. Under 50 micromol m-2 s-1 red light, 10 micromol m-2 s-1 blue light opened stomata in both WT and npq1 mutant stomata but not in the phot1 phot2 double mutant. In npq1, blue light-stimulated opening was reversed by far-red but not green light, indicating that npq1 has a phytochrome-mediated response and lacks a blue light-specific response. Stomata of the phot1 phot2 double mutant opened in response to 20 to 50 micromol m-2 s-1 blue light. This opening was green light reversible and far-red light insensitive, indicating that stomata of the phot1 phot2 double mutant have a detectable blue light-specific response.  相似文献   

12.
Abstract. The response of stomatal conductance to broadband blue and red light was measured in whole shoots of Scots pine and Sitka spruce, two species which have low stomatal sensitivity to CO2. In Scots pine, blue light was more than three times more effective than red light (on an incident quantum basis) in opening stomata, particularly at low quantum flux densities (<100μmiol m−2 s−1). However, the apparent quantum yield of net CO2 assimilation rate in blue light was only half that in red light. The contrasting effects of red and blue light on conductance and assimilation led to higher intercellular CO2 concentrations (Ci) in blue light (up to 100 μmol mol−1 higher) than in red light. Similar results were obtained with Sitka spruce shoots, though differences in the effectiveness of red and blue light were less marked. In both species, both red and blue light increased conductance in normal and CO2-free air, indicating that neither red nor blue light exert effects through changes in Ci or mesophyll assimilation. However, decreases in Ci caused increases in conductance in both red and blue light, suggesting that these direct effects of light are not wholly independent of CO2.  相似文献   

13.
The ultraviolet action spectrum for stomatal opening in broad bean   总被引:3,自引:0,他引:3       下载免费PDF全文
The ultraviolet action spectrum for stomatal opening was measured using epidermal peels from leaves of broad bean (Vicia faba). The spectrum was calculated from hyperbolic fluence response curves using 11 wavelengths ranging from 275 to 459 nm. The action spectrum exhibits a major peak at approximately 280 nm and a minor peak at approximately 360 nm. The response at 280 nm is about three times greater than the response at 459 nm. Under the conditions utilized (i.e. the absence of saturating red light), stomatal opening saturated at extremely low fluence rates: <0.2 μmol m−2 s−1 at 280 nm, and approximately 1.0 μmol m−2 s−1 at 459 nm. The threshold for blue-light-induced stomatal opening was approximately 0.02 μmol m−2 s−1. In light-mixing experiments, the addition of 280 nm light to saturating 650 nm (red) light caused additional stomatal opening, which is indicative of separate photoreceptors. In contrast, adding 280 nm of light to saturating 459 nm (blue) light did not increase stomatal opening, suggesting that they both excite the same receptor. The results with white light were similar to those with blue light. We infer that ultraviolet light acts via the blue light photoreceptor rather than through photosynthesis. The additional absorbance peak at 360 nm suggests that the chromophore is either a flavin or a cis-carotenoid, both of which exhibit peaks in this region. It is proposed that the chromophore can be excited either directly by blue light or by energy transferred from the protein portion of the protein-pigment complex after it absorbs 280 nm light.  相似文献   

14.
Guard cells of the orchid genus, Paphiopedilum have been reported to lack developed chloroplasts and detectable chlorophyll a autofluorescence. Paphiopedilum stomata lack a photosynthesis-dependent opening response but have a blue light-specific opening. The present study found that low fluence rate green and red light elicited stomatal opening in Paphiopedilum and this opening was reversed by far red light, indicating the presence of a phytochrome-mediated opening response. Phytochrome-dependent, red light-stimulated opening was largest under low fluence rates and decreased to near zero as fluence rate increased. A recently discovered green light reversibility of blue light-specific stomatal opening was used to probe the properties of the blue light response in Paphiopedilum stomata. Blue light-stimulated opening was completely reversed by green light in the presence of far red light. Red light enhanced the blue light response of Paphiopedilum guard cells when given as a pretreatment or together with blue light. Analysis of guard cell pigments showed that guard cells have small amounts of chlorophyll a and b, zeaxanthin, violaxanthin, antheraxanthin and lutein. Zeaxanthin content increased in response to blue light or ascorbate and declined in the dark or under illumination in the presence of dithiothreitol, indicating the presence of an active xanthophyll cycle. Thus Paphiopedilum stomata possess both a blue light-mediated opening response with characteristics similar to species with normal chloroplast development and a novel phytochrome-mediated opening response.  相似文献   

15.
The requirement for calcium in blue light-promoted stomatal opening, in comparison with that in red light, was studied in epidermal strips of Commelina benghalensis L. Blue light promoted stomatal opening in the presence of a low level of calcium, whereas in red light opening was relatively tolerant to calcium. Stomatal opening under blue light was restricted by external calcium (above 5 μ M ) or abscisic acid. When present in the incubation medium, EGTA increased the extent of stomatal opening under blue light. Verapamil (a calcium-channel blocker) and trifluoperazine (TFP, a calmodulin antagonist) reduced the stimulation of stomatal opening by blue light. Lanthanum, an external calcium-channel antagonist, had no significant effect on stomatal opening under either blue or red light. These observations indicate that blue light-promoted stomatal opening preferentially occurs at low levels of calcium, and modulation by calmodulin is strongly suggested. We conclude that a fine-tuning of the calcium level within guard cells is essential during the transduction of the blue light signal.  相似文献   

16.
Green light reversal of blue light-stimulated stomatal opening was discovered in isolated stomata. The present study shows that the response also occurs in stomata from intact leaves. Arabidopsis thaliana plants were grown in a growth chamber under blue, red and green light. Removal of the green light opened the stomata and restoration of green light closed them to baseline values under experimental conditions that rule out a mesophyll-mediated effect. Assessment of the response to green light over a daily time course showed that the stomatal sensitivity to green light was observed only in the morning, which coincided with the use of potassium as a guard cell osmoticum. Sensitivity to green light was absent during the afternoon phase of stomatal movement, which was previously shown to be dominated by sucrose osmoregulation in Vicia faba. Hence, the shift away from potassium-based osmoregulation in guard cells is further postulated to entail a shift from blue light to photosynthesis as the primary component of the stomatal response to light. Stomata from intact leaves of the zeaxanthin-less, npq1 mutant of Arabidopsis failed to respond to the removal or restoration of green light in the growth chamber, or to short, high fluence pulses of blue or green light. These data confirm previous studies showing that npq1 stomata are devoid of a specific blue light response. In contrast, stomata from intact leaves of phot1 phot2 double mutant plants had a reduced but readily detectable response to the removal of green light and to blue and green pulses.  相似文献   

17.
Concentrations of soluble sugars in guard cells in detached, sonicated epidermis from Vicia faba leaves were analyzed quantitatively by high performance liquid chromatography to determine the extent to which sugars could contribute to changes in the osmotic potentials of guard cells during stomatal opening. Stomata were illuminated over a period of 4 hours with saturating levels of red or blue light, or a combination of red and blue light. When stomata were irradiated for 3 hours with red light (50 micromoles per square meter per second) in a solution of 5 millimolar KCl and 0.1 millimolar CaCl2, stomatal apertures increased a net maximum of 6.7 micrometers and the concentration of total soluble sugar was 289 femtomoles per guard cell (70% sucrose, 30% fructose). In an identical solution, 2.5 hours of irradiation with 25 micromoles per square meter per second of blue light caused a maximum net increase of 7.1 micrometers in stomatal aperture and the total soluble sugar concentration was 550 femtomoles per guard cell (91% sucrose, 9% fructose). Illumination with blue light at 25 micromoles per square meter per second in a solution lacking KCl caused a maximum net increase in stomatal aperture of 3.5 micrometers and the sugar concentration was 382 femtomoles per guard cell (82% sucrose, 18% fructose). In dual beam experiments, stomata irradiated with 50 micromoles per square meter per second of red light opened steadily with a concomitant increase in sugar production. Addition of 25 micromoles per square meter per second of blue light caused a further net gain of 3.7 micrometers in stomatal aperture and, after 2 hours, sugar concentrations had increased by an additional 138 femtomoles per guard cell. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were performed with epidermis illuminated with 50 micromoles per square meter per second of red light or with 25 micromoles per square meter per second of blue light in solutions containing or lacking KCl. DCMU completely inhibited sugar production under red light, had no effect on guard cell sugar production under blue light when KCl was present, and inhibited sugar production by about 50% when guard cells were illuminated with blue light in solutions lacking KCl. We conclude that soluble sugars can contribute significantly to the osmoregulation of guard cells in detached leaf epidermis of V. faba. These results are consistent with the operation of two different sugar-producing pathways in guard cells: a photosynthetic carbon reduction pathway and a pathway of blue light-induced starch degradation.  相似文献   

18.
Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic induction of Paphiopedilum and Cypripedium, the stomatal anatomy and photosynthetic induction of Paphiopedilum armeniacum and Cypripedium flavum were investigated at different ratios of red to blue light. The highest stomatal opening and photosynthesis of intact leaves in P. armeniacum were induced by irradiance enriched with blue light. Its stomatal opening could be induced by red light 250 µmol m?2 s?1, but the magnitude of stomatal opening was lower than those at the other light qualities. However, the stomatal opening and photosynthesis of C. flavum were highly induced by mixed blue and red light rather than pure blue or red light. The two orchid species did not differ in stomatal density, but P. armeniacum had smaller stomatal size than C. flavum. The stomata of P. armeniacum were slightly sunken into the leaf epidermis, while C. flavum protruded above the leaf surface. The slower photosynthetic induction and lower photosynthetic rate of P. armeniacum than C. flavum were linked to the lack of guard cell chloroplasts and specific stomatal structure, which reflected an adaptation of Paphiopedilum to periodic water deficiency in limestone habitats. These results provide evidence for the morphological and physiological evolution of stomata relation for water conservation under natural selection.  相似文献   

19.
M. Pollok  U. Heber  M. S. Naik 《Planta》1989,178(2):223-230
When leaves of Helianthus annuus, whose stomates had been opened in the dark in the absence of CO2, were exposed to 25% carbon monoxide (CO), stomatal conductivity for water vapor decreased from about 0.4 to 0.2 cm·s-1. The CO effect on stomatal aperture required a CO/O2 ratio of about 25. As this ratio was decreased the stomata opened, indicating that inhibitio of cytochrome-c oxidase by CO is competitive in respect to O2. Photosynthetically active red light was unable to reverse CO-induced stomatal closure even at high irradiances, when CO2 was absent. When it was present, stomatal opening was occasionally, but not consistently observed. Carbon monoxide did not inhibit photosynthetic carbon reduction in leaves of Helianthus.In contrast to red light, very weak blue light (405 nm) increased the stomatal aperture in the presence of CO. It also increased leaf ATP/ADP ratios which had been decreased in the presence of CO. The blue-light effect was not related to photosynthesis. Neither could it be explained by photodissociation of the cytochrome a 3-CO complex which has an absorption maximum at 430 nm. The data indicate that ATP derived from mitochondrial oxidative phosphorylation provides energy for stomatal opening in sunflower leaves in the dark as well as in the light. Indirect transfer of ATP from chloroplasts to the cytosol via the triose phosphate/phosphoglycerate exchange which is mediated by the phosphate translocator of the chloroplast envelope can support stomatal opening only if metabolite concentrations are high enough for efficient shuttle transfer of ATP. Blue light causes stomatal opening in the presence of CO by stimulating ATP synthesis.  相似文献   

20.
A red background illumination synergistically increased the sensitivity of the stomatal conductance response to low intensity blue light in wheat seedlings ( Triticum aestivum L. cv. Starke II, Weibull). It also saturated the photosynthesis dependent mechanisms so that they did not respond to the low quantum fluence rates needed to activate the blue light mechanism. Thus dual beam experiments provide a suitable experimental approach to study the blue light mechanism for stomatal regulation in the intact leaf. Time course studies indicated that in short time experiments the enhancement effect of the red background light was primarily a result of the increase in conductance level rather than a direct effect of the red light. This was confirmed with experiments where the stomatal blue light response was enhanced due to partial stomatal opening in CO2 free air as well as due to circadian rhythm. During long term experiments the response to blue light gradually decreased. It could then, however, be restored by a simultaneous red background light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号