首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although exercise testing is useful in the diagnosis and management of cardiovascular and pulmonary diseases, a rapid comprehensive method for measurement of ventilation and gas exchange has been limited to expensive complex computer-based systems. We devised a relatively inexpensive, technically simple, and clinically oriented exercise system built around a desktop calculator. This system automatically collects and analyzes data on a breath-by-breath basis. Our calculator system overcomes the potential inaccuracies of gas exchange measurement due to water vapor dilution and mismatching of expired flow and gas concentrations. We found no difference between the calculator-derived minute ventilation, CO2 production, O2 consumption, and respiratory exchange ratio and the values determined from simultaneous mixed expired gas collections in 30 constant-work-rate exercise studies. Both tabular and graphic displays of minute ventilation, CO2 production, O2 consumption, respiratory exchange ratio, heart rate, end-tidal O2 tension, end-tidal CO2 tension, and arterial blood gas value are included for aid in the interpretation of clinical exercise tests.  相似文献   

2.
Alveolar exchange of a gas is governed by the ventilation-perfusion ratio (VA/Q) and the Ostwald partition coefficient for that species. We altered the Ostwald coefficients for O2 and CO2 by considering an animal breathing water or a fluorocarbon (FC-80) and studied the effects on gas exchange. Among our conclusions are the following. 1) When the ratio of the CO2 to O2 solubility in the inspirate exceeds the ratio of the O2 to the CO2 slope of the blood dissociation curve, as in water breathing, the VA/Q line becomes concave upward, and elements having a low VA/Q differ from each other more in terms of CO2 than of O2. 2) As the ratio of the CO2 to O2 solubility in the inspired medium increases, CO2 elimination becomes more dependent on perfusion. 3) At times, the same R will prevail in areas having different VA/Q values. 4) The alveolar-to-arterial O2 and CO2 differences resulting from a given VA/Q distribution do not depend on the O2 and CO2 solubility coefficients of the inspired medium, but on the inspired and mixed venous concentrations necessary to maintain adequate arterial gas levels in the presence of different inspired media.  相似文献   

3.
Respiratory sinus arrhythmia (RSA) may be associated with improved efficiency of pulmonary gas exchange by matching ventilation to perfusion within each respiratory cycle. Respiration rate, tidal volume, minute ventilation (.VE), exhaled carbon dioxide (.VCO(2)), oxygen consumption (.VO(2)), and heart rate were measured in 10 healthy human volunteers during paced breathing to test the hypothesis that RSA contributes to pulmonary gas exchange efficiency. Cross-spectral analysis of heart rate and respiration was computed to calculate RSA and the coherence and phase between these variables. Pulmonary gas exchange efficiency was measured as the average ventilatory equivalent of CO(2) (.VE/.VCO(2)) and O(2) (.VE/.VO(2)). Across subjects and paced breathing periods, RSA was significantly associated with CO(2) (partial r = -0.53, P = 0.002) and O(2) (partial r = -0.49, P = 0.005) exchange efficiency after controlling for the effects of age, respiration rate, tidal volume, and average heart rate. Phase between heart rate and respiration was significantly associated with CO(2) exchange efficiency (partial r = 0.40, P = 0.03). These results are consistent with previous studies and further support the theory that RSA may improve the efficiency of pulmonary gas exchange.  相似文献   

4.
Mechanism of stimulation of pulmonary prostacyclin synthesis at birth   总被引:3,自引:0,他引:3  
In order to investigate the mechanism behind ventilation-induced pulmonary prostacyclin production at birth, chloralose anesthetized, exteriorized, fetal lambs were ventilated with a gas mixture that did not change blood gases (fetal gas) and unventilated fetal lungs were perfused with blood containing increased O2 and decreased CO2. Ventilation with fetal gas (3%O2, 5%CO2) increased net pulmonary prostacyclin (as 6-keto-PGF1 alpha) production from -5.1 +/- 4.4 to +12.6 +/- 7.6 ng/kg X min. When ventilation was stopped, net pulmonary prostacyclin production returned to nondetectable levels. Ventilation with gas mixtures which increased pulmonary venous PO2 and decreased PCO2 also stimulated pulmonary prostacyclin production, but did not have greater effects than did ventilation with fetal gas. In order to determine if increasing PO2 or decreasing PCO2 could stimulate pulmonary prostacyclin production independently from ventilation, unventilated fetal lamb lungs were perfused with blood that had PO2 and PCO2 similar to fetal blood, blood with elevated O2, and blood that had PO2 and PCO2 values similar to arterial blood of newborn animals. Neither increased O2 nor decreased CO2 in the blood perfusing the lungs stimulated pulmonary prostacyclin synthesis. We conclude that the mechanism responsible for the stimulation of pulmonary prostacyclin production with the onset of ventilation at birth is tissue stress during establishment of gaseous ventilation and rhythmic ventilation.  相似文献   

5.
Lungfish (Dipnoi) are probably sister group relative to all land vertebrates (Tetrapoda). The South American lungfish, Lepidosiren paradoxa, depends markedly on pulmonary gas exchange. In this context, we report on temperature effects on aquatic and pulmonary respiration, ventilation and blood gases at 15, 25 and 35 degrees C. Lung ventilation increased from 0.5 (15 degrees C) to 8.1 ml BTPS kg(-1) min(-1) (35 degrees C), while pulmonary O(2)-uptake increased from 0.06 (15 degrees C) to 0.73 ml STPD kg(-1) min(-1) (35 degrees C). Meanwhile aquatic O(2)-uptake remained about the same ( approximately 0.01 ml STPD kg(-1) min(-1)) at all temperatures. Concomitantly, the pulmonary gas exchange ratio (R(E)) rose from 0.11 (15 degrees C) to 0.62 (35 degrees C), because a larger fraction of total CO(2) output became eliminated by the lung. Accordingly, PaCO(2) rose from 13 (15 degrees C) to 37 mm Hg (35 degrees C), leading to a significant decrease of pHa at higher temperature (pHa=7.58-15 degrees C; 7.33-35 degrees C). The acid-base status of L. paradoxa was characterized by a generally low pH (7.4-7.5), high bicarbonate level (20-25 mM) and PaO(2) ( approximately 80 mm Hg). The increased dependence on the lung at higher temperature parallels data for amphibians. Further, the effects of bimodal gas exchange on temperature-dependent acid-base regulation closely resemble those of anuran amphibians.  相似文献   

6.
Respiratory gas exchange in both air and water was measured at rest and during recovery from forced submergence in the giant Mexican musk turtle (Staurotypus triporcatus) and the white-lipped mud turtle (Kinosternon leucostomum). Diving and ventilatory behavior were also measured in unrestrained animals of each species. Despite large differences in cutaneous surface area, both species exhibited an aquatic V(O(2)) and V(CO(2)) of approximately 16 and 45%, respectively, with the remainder explained by aerial gas exchange. Aquatic V(O(2)) and V(CO(2)) did not significantly change during forced submergence or during the recovery period. Aerial V(O(2)) and V(CO(2)), however, profoundly increased after forced submergence in both species and were not significantly different from resting values until approximately 60 min following the treatment. At rest, K. leucostomum took significantly more breaths per breathing bout than S. triporcatus. This inherent ventilation pattern in each species remained unaltered following forced submergence. Cutaneous surface area, therefore, remains a minor component for these two species which rely heavily on pulmonary gas exchange to recover from forced submergence.  相似文献   

7.
The carotenoid compound crocetin has been hypothesized to enhance the diffusion of O(2) through plasma, and observations in the rat and rabbit have revealed improvement in arterial PO(2) when crocetin is given. To determine whether crocetin enhances diffusion of O(2) between alveolar gas and the red blood cell in the pulmonary capillary in vivo, five foxhounds, two previously subjected to sham and three to actual lobectomy or pneumonectomy, were studied while breathing 14% O(2) at rest and during moderate and heavy exercise before and within 10 min after injection of a single dose of crocetin as the trans isomer of sodium crocetinate (TSC) at 100 microg/kg iv. This dose is equivalent to that used in previous studies and would yield an initial plasma concentration of 0.7-1.0 microg/ml. Ventilation-perfusion inequality and pulmonary diffusion limitation were assessed by the multiple inert gas elimination technique in concert with conventional measurements of arterial and mixed venous O(2) and CO(2). TSC had no effect on ventilation, cardiac output, O(2) consumption, arterial PO(2)/saturation, or pulmonary O(2) diffusing capacity. There were minor reductions in ventilation-perfusion mismatching (logarithm of the standard deviation of perfusion fell from 0.48 to 0.43, P = 0.001) and in CO(2) output and respiratory exchange ratio (P = 0.05), which may have been due to TSC or to persisting effects of the first exercise bout. Spectrophotometry revealed that TSC disappeared from plasma with a half time of approximately 10 min. We conclude that, in this model of extensive pulmonary O(2) diffusion limitation, TSC as given has no effect on O(2) exchange or transport. Whether the original hypothesis is invalid, the dose of TSC was too low, or plasma diffusion of O(2) is not rate limiting without TSC cannot be discerned from the present study.  相似文献   

8.
Pulmonary gas exchange was measured in seven resting supine subjects breathing air or a dense gas mixture containing 21% O2 in sulfur hexafluoride (SF6). The mean value of the alveolar-arterial oxygen difference (AaDO2) decreased from 12.4 on air to 7.0 on SF6 (P less than 0.01), and increased again to 13.4 when air breathing resumed (P less than 0.01). No differences occurred between gas mixtures for O2 consumption, respiratory quotient, minute ventilation, breathing frequency, heart rate, or blood pressure, and the improved oxygen transfer could not be attributed to changes in cardiac output or mixed venous oxygen content in the one subject in which they were measured. These results are best explained by an altered distribution of ventilation during dense gas breathing, so that the ventilation-perfusion ratio (VA/Q) variance was reduced. Of several considered mechanisms, we favor one in which SF6 promotes cardiogenic gas mixing between peripheral parallel units having different alveolar gas concentrations. This mechanism allows for observed increases in arterial carbon dioxide tension and dead space-to-tidal volume ratio during dense gas breathing, and suggests that intraregional VA/Q variance accounts for at least one-half of the resting AaDO2 in healthy supine young men.  相似文献   

9.
Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpiration to the atmosphere. When resting, many species exchange respiratory gases discontinuously, and an early hypothesis for the origin of these discontinuous gas exchange cycles (DGCs) is that they serve to reduce respiratory water loss. In this study, we test this "hygric" hypothesis by comparing rates of CO(2) exchange and water loss among flower beetles Protaetia cretica (Cetoniinae, Scarabaeidae) breathing either continuously or discontinuously. We show that, consistent with the expectations of the hygric hypothesis, rates of total water loss are higher during continuous gas exchange than during discontinuous gas exchange and that the ratio of respiratory water loss to CO(2) exchange is lower during discontinuous gas exchange. This conclusion is in agreement with other studies of beetles and cockroaches that also support the hygric hypothesis. However, this result does not exclude other adaptive hypotheses supported by work on ants and moth pupae. This ambiguity may arise because there are multiple independent evolutionary origins of DGCs and no single adaptive function underlying their genesis. Alternatively, the observed reduction in water loss during DGCs may be a side effect of a nonadaptive gas exchange pattern that is elicited during periods of inactivity.  相似文献   

10.
Slow deep breathing improves blood oxygenation (SpO2) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2–3 days (Study A; N = 39) or at 5400 m for 12–16 days (Study B; N = 28). Study variables, including SpO2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in SpO2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.  相似文献   

11.
We studied the effects of conventional mechanical ventilation (CMV) (15 ml/kg tidal volume delivered at 18-25 breaths/min) and high-frequency oscillatory ventilation (HFOV) (less than or equal to 2 ml/kg delivered at 10 Hz) on pulmonary hemodynamics and gas exchange during ambient air breathing and hypoxic gas breathing in 10 4-day-old lambs. After instrumentation and randomization to either HFOV or CMV the animals breathed first ambient air and then hypoxic gas (inspired O2 fraction = 0.13) for 20 min. The mode of ventilation was then changed, and the normoxic and hypoxic gas challenges were repeated. The multiple inert gas elimination technique was utilized to assess gas exchange. There was a significant increase with HFOV in mean pulmonary arterial pressure (Ppa) (20.1 +/- 4.2 vs. 22 +/- 3.8 Torr, CMV vs. HFOV, P less than 0.05) during ambient air breathing. During hypoxic gas breathing Ppa was also greater with HFOV than with CMV (29.5 +/- 5.7 vs. 34 +/- 3.1 Torr, CMV vs. HFOV, P less than 0.05). HFOV reduced pulmonary blood flow (Qp) during ambient air breathing (0.33 +/- 0.11 vs. 0.28 +/- 0.09 l . kg-1 . min-1, CMV vs. HFOV, P less than 0.05) and during hypoxic gas breathing (0.38 +/- 0.11 vs. 0.29 +/- 0.09 l . kg-1 . min-1, P less than 0.05). There was no significant difference in calculated venous admixture for sulfur hexafluoride or in the index of low ventilation-perfusion lung regions with HFOV compared with CMV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

13.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

14.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pressure-flow relationships in the ventilated lung have not been previously determined in undelivered fetal sheep. Therefore we studied 11 late-gestation chronically prepared fetal sheep during positive-pressure ventilation with different gas mixtures to determine the roles of mechanical distension and blood gas tensions on pressure-flow relationships in the lung. Ventilation with 3% O2-7% CO2 produced a substantial fall in pulmonary vascular resistance even though arterial blood gases were not changed. Increases in pulmonary arterial PO2 during ventilation were associated with falls in pulmonary vascular resistance beyond that measured during mechanical distension. Decreases in pulmonary arterial PCO2 and associated increases in pH were also associated with falls in pulmonary vascular resistance. Pulmonary blood flow ceased at a pulmonary arterial pressure that exceeded left atrial pressure, indicating that left atrial pressure does not represent the true downstream component of driving pressure through the pulmonary vascular bed. The slope of the driving pressure-flow relationship in the normal mature fetal lamb was therefore different from the ratio of pulmonary arterial pressure to pulmonary arterial flow. We conclude that mechanical ventilation, increased PO2 and decreased PCO2, and/or increased pH has an important influence on the fall in pulmonary vascular resistance elicited by positive pressure in utero ventilation of the fetal lamb and that the downstream driving pressure for pulmonary blood flow exceeds left atrial pressure.  相似文献   

16.
We have recently described a new method for measuring distributions of ventilation-perfusion ratios (VA/Q) based on inert gas elimination. Here we report the initial application of the method in normal dogs and in dogs with pulmonary embolism, pulmonary edema, and pneumonia. Characteristic distributions appropriate to the known effects of each lesion were observed. Comparison with traditional indices of gas exchange revealed that the arterial PO2 calculated from the distributions agreed well with measured values, as did the shunts indicated by the method and by the arterial PO2 while breathing 100 per cent 02. Also the Bohr dead space closely matched the dispersion of ventilation in realtion to VA/Q. Assumptions made in the method were critically evaluated and appear justified. These include the existence of a steady state of gas exchange, an alveolar-end-capillary diffusion equilibration, and the fact that all of the observered VA/Q inequality occurs between gas exchange units in parallel. However, theoretical analysis suggests that the method can detect failure of diffusion equilbration across the blood-gas barrier should it exist. These results suggest that the method is well-suited to clinical investigation of patients with pulmonary disease.  相似文献   

17.
Ventilation-perfusion (VA/Q) inhomogeneity was modeled to measure its effect on gas exchange in the presence of inspired mixtures of two soluble gases using a two-compartment computer model. Theoretical studies involving a mixture of hypothetical gases with equal solubility in blood showed that the effect of increasing inhomogeneity of distributions of either ventilation or blood flow is to paradoxically increase uptake of the gas with the lowest overall uptake in relation to its inspired concentration. This phenomenon is explained by the concentrating effects that uptake of soluble gases exert on each other in low VA/Q compartments. Repeating this analysis for inspired mixtures of 30% O(2) and 70% nitrous oxide (N(2)O) confirmed that, during "steady-state" N(2)O anesthesia, uptake of N(2)O is predicted to paradoxically increase in the presence of worsening VA/Q inhomogeneity.  相似文献   

18.
Periodic breathing in the mouse.   总被引:3,自引:0,他引:3  
The hypothesis was that unstable breathing might be triggered by a brief hypoxia challenge in C57BL/6J (B6) mice, which in contrast to A/J mice are known not to exhibit short-term potentiation; as a consequence, instability of ventilatory behavior could be inherited through genetic mechanisms. Recordings of ventilatory behavior by the plethsmography method were made when unanesthetized B6 or A/J animals were reoxygenated with 100% O(2) or air after exposure to 8% O(2) or 3% CO(2)-10% O(2) gas mixtures. Second, we examined the ventilatory behavior after termination of poikilocapnic hypoxia stimuli in recombinant inbred strains derived from B6 and A/J animals. Periodic breathing (PB) was defined as clustered breathing with either waxing and waning of ventilation or recurrent end-expiratory pauses (apnea) of > or = 2 average breath durations, each pattern being repeated with a cycle number > or = 3. With the abrupt return to room air from 8% O(2), 100% of the 10 B6 mice exhibited PB. Among them, five showed breathing oscillations with apnea, but none of the 10 A/J mice exhibited cyclic oscillations of breathing. When the animals were reoxygenated after 3% CO(2)-10% O(2) challenge, no PB was observed in A/J mice, whereas conditions still induced PB in B6 mice. (During 100% O(2) reoxygenation, all 10 B6 mice had PB with apnea.) Expression of PB occurred in some but not all recombinant mice and was not associated with the pattern of breathing at rest. We conclude that differences in expression of PB between these strains indicate that genetic influences strongly affect the stability of ventilation in the mouse.  相似文献   

19.
The O2 uptake capacity of Amphipnous cuchia has been determined in relation to standard temperature of 25 degrees C. The measurement of O2 uptake indicates nearly 75% of the oxygen demand to be met through the air breathing organs and 25% by the skin and vestigeal gill through water in a normal habitat. The total VO2 during aerial-aquatic gas exchange is 60.5 ml/kg/hr. The prevention of surfacing resulted in a lower O2 uptake rate (38.29 ml/kg/hr). During submergence, the utilisation of air sacs for extracting O2 by regular pumping of water in and out is peculiar to the fish. Under normal respiratory conditions (air + water), the slope for O2 uptake through air is 0.72, 0.23 for water and 0.57 for both air + water. The average ratio borne by the fish for aquatic/air breathing (ml/kg/min) is higher in fishes below 60 g body weight, and aquatic respiration predominates in fishes weighing less than 6.0 g.  相似文献   

20.
Many avian species exhibit an extraordinary ability to exercise under hypoxic condition compared with mammals, and more efficient pulmonary O(2) transport has been hypothesized to contribute to this avian advantage. We studied six emus (Dromaius novaehollandaie, 4-6 mo old, 25-40 kg) at rest and during treadmill exercise in normoxia and hypoxia (inspired O(2) fraction approximately 0.13). The multiple inert gas elimination technique was used to measure ventilation-perfusion (V/Q) distribution of the lung and calculate cardiac output and parabronchial ventilation. In both normoxia and hypoxia, exercise increased arterial Po(2) and decreased arterial Pco(2), reflecting hyperventilation, whereas pH remained unchanged. The V/Q distribution was unimodal, with a log standard deviation of perfusion distribution = 0.60 +/- 0.06 at rest; this did not change significantly with either exercise or hypoxia. Intrapulmonary shunt was <1% of the cardiac output in all conditions. CO(2) elimination was enhanced by hypoxia and exercise, but O(2) exchange was not affected by exercise in normoxia or hypoxia. The stability of V/Q matching under conditions of hypoxia and exercise may be advantageous for birds flying at altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号