首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The selfassociation of N6,N9-dimethyladenine and N6-dimethyl-N9-ethyladenine has been studied by means of NMR technique. The thermodynamic quantities have been calculated using an isodesmic NMR model with three NMR parameters (the monomer shift M and two complex shifts 2 and 3).The dependence of the thermodynamic quantities on the NMR parameters is discussed. Special attention is given to the determination of M and its temperature dependence.Calculations with 3=2· 2 and M taken independently of temperature result in an average entropy S =–17.9±1.8 e.u. for N6,N9-dimethyladenine and S =–16.7±1.7 e.u. for N6-dimethyl-N9-ethyladenine and in an average enthalpy H=–7.2±0.6 kcal· mol–1 for both substances investigated.Part of the Ph.D. Theses of W. Schimmack and H. Sapper.Dedicated to Professor Dr. A. Schraub on the occasion of his 65th birthday.  相似文献   

2.
Splitting of the amino proton signals of 9-ethyladenine derivatives was found in proton nuclear magnetic resonance spectra at low temperature (ca. -30 degrees C). One of the separated signals corresponds to the syn amino proton relative to the N(1) nitrogen in the adenine ring and the other to the anti one. The phenomenon is ascribable to slowing down of the hindered rotation around the N(6)-C(6) bond, which has partial double bond character. On the addition of 1-cyclohexyluracil derivatives, one of the separated signals shifts downfield. From the analysis of the concentration dependence of the signals we could estimate the population of two kinds of adenine-uracil (AU) dimers that employ the syn and anti protons, respectively. i.e. the Watson-Crick-type and the Hoogsteen-type dimers. Independent of the substitution on the uracil ring, the Hoogsteen type is predominant at 70% and the Watson-Crick type at 30% (at -56 degrees C). On the other hand, with mixtures of general kinds of 9-ethyladenine derivatives with 1-cyclohexyluracil. the substituents on the adenine ring cause the population to deviate to extreme values; i.e., either the Watson-Crick-type or the Hoogsteen-type dimer predominates. 2-Chloro-9-ethyladenine and N2-(dimethylamino)-9-ethyladenine take almost completely the Hoogsteen-type dimers, while 8-bromo-9-ethyladenine, N2-(methylamino)-9-ethyladenine, and 2-amino-9-ethylpurine predominant in the Watson-Crick-type dimers.  相似文献   

3.
NMR study of the alkaline isomerization of ferricytochrome c   总被引:1,自引:0,他引:1  
X L Hong  D W Dixon 《FEBS letters》1989,246(1-2):105-108
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively.  相似文献   

4.
The imino-amino tautomeric equilibrium of the promutagenic adenosine analogue N6-methoxy-2',3',5'-tri-O-methyladenosine [OMe6A(Me)3], in solvents of various polarities, has been studied with the aid of 1H and 13C NMR spectroscopy. The high energy barrier (free enthalpy delta G = 80 +/- 5 kJ X mol-1) between the two tautomeric species renders possible direct observation of the independent sets of all 1H and 13C signals from each of them. The equilibrium ranges from 10% imino in CCl4 to 90% in aqueous medium. Thermodynamic parameters, including energy barriers and lifetimes, were calculated from the temperature dependence of the equilibrium. Essentially similar results prevail for the promutagenic N6-hydroxy analogue. The conformations of the sugar moieties, and of the base about the glycosidic bond, for both tautomers are similar to those for adenosine. The conformation of the exocyclic N6-OCH3 group, which determines the ability of each species to form planar associates (hydrogen-bonded base pairs), has also been evaluated. Formation of autoassociates of OMe6A(Me)3 and of heteroassociates with the potentially complementary 2',3',5'-tri-O-methyluridine and -cytidine, in chloroform solution, was also investigated. The amino form base pairs with uridine and the imino form with cytidine. Formation of a complementary base pair by a given tautomeric species was accompanied by an increase of up to 10% in the population of this species and a concomitant decrease in population of the other species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The preparation and spectroscopic characterization of duplex decamers containing site-specific cis-syn and trans-syn thymine dimers are described. Three duplex decamers, d(CGTATTATGC).d(GCATAATACG), d(CGTAT[c,s]TATGC).d(GCATAATACG), and d(CGTAT[t,s]TATGC).d(GCATAATACG), were prepared by solid-phase phosphoramidite synthesis utilizing cis-syn and trans-syn cyclobutane thymine dimer building blocks (Taylor et al., 1987; Taylor & Brockie, 1988). NMR spectra (500 MHz 2D 1H and 202 MHz 1D 31P) were obtained in "100%" D2O at 10 degrees C, and 1D exchangeable 1H spectra were obtained in 10% D2O at 10 degrees C. 1H NMR assignments for H5, H6, H8, CH3, H1', H2', and H2" were made on the basis of standard sequential NOE assignment strategies and verified in part by DQF COSY data. Comparison of the chemical shift data suggests that the helix structure is perturbed more to the 3'-side of the cis-syn dimer and more to the 5'-side of the trans-syn dimer. Thermodynamic parameters for the helix in equilibrium coil equilibrium were obtained by two-state, all or none, analysis of the melting behavior of the duplexes. Analysis of the temperature dependence of the T5CH3 1H NMR signal gave delta H = 44 +/- 4 kcal and delta S = 132 +/- 13 eu for the trans-syn duplex. Analysis of the concentration and temperature dependence of UV spectra gave delta H = 64 +/- 6 kcal and delta S = 178 +/- 18 eu for the parent duplex and delta H = 66 +/- 7 kcal and delta S = 189 +/- 19 eu for cis-syn duplex. It was concluded that photodimerization of the dTpdT unit to give the cis-syn product causes little perturbation of the DNA whereas dimerization to give the trans-syn product causes much greater perturbation, possibly in the form of a kink or dislocation at the 5'-side of the dimer.  相似文献   

6.
A hairpin-shaped oligodeoxyribonucleotide d(pTTGGCACGAGCAGCCAA) (I) was alkylated with the reagent d(TTGGG) greater than UCHRCl (RCl = -C6H5-N(CH3)-CH2-CH2Cl) complementary to the hairpin's stem. Thermodynamic parameters for the hairpin structure estimated from melting curves were: delta Hh = -125 +/- 17 kJ/mol, delta Sh = -380 +/- 84 J/mol.K; and for the reagent - target complex delta Hpx = -155 +/- 8 kJ/mol, delta Spx = -427 +/- 21 J/mol.K. Effective constants of association Kx of the oligonucleotide with the reagent were determined at 30 and 50 degrees from the concentration dependence of the reaction yield and were 1988 +/- 83 and 1239 +/- 58 M-1, respectively. Experimental values of Kx agreed with the values of Kx = Kpx/(1 + Kh), calculated with the use of the thermodynamic parameters.  相似文献   

7.
Heats of dilution of concentrated glucagon solutions have been measured calorimetrically at 10 and 25 degrees C in 0.2 M potassium phosphate buffer of pH 10.6. Analysis of the data in terms of a monomer-trimer equilibrium gives the following thermodynamic parameters for the association reaction at 25 degrees C: delta G degrees = 7.34 kcal/mol of trimer, delta H degrees = -31.2 kcal/mol, deltaS degrees = -80 cal/(K mol), deltaCp = 430 cal/(K mol). The sensitivity of heat of dilution data to the association constant and stoichiometry of the reaction is discussed.  相似文献   

8.
The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F Ahmad  P McPhie 《Biochemistry》1978,17(2):241-246
The denaturation of swine pepsinogen has been studied as a function of urea concentration, pH, and temperature. The unfolding of the protein by urea has been found to be fully reversible under different conditions of pH, temperature, and denaturant concentration. Kinetic experiments have shown that the transition shows two-state behavior at 25 degrees C in the pH range 6-8 covered in this study. Analysis of the equilibrium data obtained at 25 degrees C according to Tanford (Tanford, C. (1970), Adv. Protein Chem. 24, 1) and Pace (Pace, N.C. (1975), Crit. Rev. Biochem. 3, 1) leads to the conclusion that the free energy of stabilization of native pepsinogen, relative to the denatured state, under physiological conditions, is only 6-12 kcal mol-1. The temperature dependence of the equilibrium constant for the unfolding of pepsinogen by urea in the range 20-50 degrees C at pH 8.0 can be described by assigning the following values of thermodynamic parameters for the denaturation at 25 degrees C: deltaH=31.5 kcal mol-1; deltaS=105 cal deg-1 mol-1; and deltaCp=5215 cal deg-1 mol-1.  相似文献   

10.
T P Pitner  J D Glickson 《Biochemistry》1975,14(14):3083-3087
Kinetics of internal rotation about the C(6)-N(6) bond of N-6,N-6-dimethyladenine (M2-6A) was investigated by -1H nuclear magnetic resonance line-shape analysis of the methyl resonances (220 MHz). Rates of rotation were determined for M2-6A deuterated at N(1) and for neutral M2-6A. Activation parameters for monodeuterated M2-6A at 22 degrees are Ea = 13.8kcal/mol, log A = 12.6, incrementG++=14.9 kcal/mol, incrementH++ = 13.1 kcal/mol, incrementS++ = minus 5.8 eu; for neutral M2-6A: Ea = 15.5 kcal/mol, log A = 14.9, incrementG++ = 12.6 kcal/mol, incrementH++ = 14.9 kcal/mol, incrementS++ =7.8 eu. Vertical stacking of bases interferes with internal rotation of the dimethylamino group.  相似文献   

11.
The pharmacology of N6-endonorbornan-2-yl-9-methyladenine (N0861), a new selective antagonist of adenosine at the A1 adenosine receptor subtype (A1-AdoR), was studied in vivo using a canine model. First, the pharmacokinetics of N0861 were determined in anesthetized dogs. The time-dependent decay of plasma levels of N0861 fitted a two-compartment polyexponential model with alpha-phase t1/2 = 3.80 min and beta-phase t1/2 = 80.55 min. Secondly, the effect of N0861 on the negative chronotropic and vasodilatory actions of adenosine in the canine heart were determined. N0861 attenuated the negative chronotropic action of adenosine (1-6 mumol/kg; rapid bolus into the right atrium) on sinus node pacemaker activity in a dose-dependent manner (pA2 = 4.23). For example, the maximal prolongation of sinus cycle length induced by 6 mumol/kg adenosine was 82 +/- 13% under baseline conditions and 57 +/- 10, 34 +/- 5 and 34 +/- 6% during infusion of N0861 at incremental rates leading to plasma levels of 7.75 +/- 1.02, 14.15 +/- 0.87, and 19.71 +/- 1.83 micrograms/mL, respectively. In contrast, N0861 did not inhibit but had a tendency to potentiate the vasodilatory action of adenosine (thought to be mediated by the A2 adenosine receptor subtype (A2-AdoR)) on the left anterior descending and circumflex coronary arteries. These data indicate that two different receptors, similar to the typical A1-AdoR and A2-AdoR, mediate the electrophysiologic and vasodilatory actions of adenosine in the canine heart, respectively, and that N0861 is a selective antagonist of adenosine at A1-AdoR in the canine heart in vivo.  相似文献   

12.
Structural and kinetic features of the Mn(II)-Leu-enkephalin binding equilibria were delineated by measuring 13C and 1H NMR spin-lattice relaxation rates. The temperature dependence of such rates showed that some carbons were experiencing slow exchange regimes such that kinetic parameters at room temperature could be calculated (k(off) = 1400 sec-1, delta H* = 12.0 kcal/mol, delta S* = -9.9 e.u.). The paramagnetic rates of fast exchanging carbons were interpreted by the Solomon-Bloembergen-Morgan theory to provide structural parameters. The terminal carboxyl and amino groups were shown to be the binding sites. The motional correlation time (tau c = 0.6 nsec at 298 K) was calculated by measuring selective and double-selective 1H spin-lattice relaxation rates for the free peptide. The number of coordinated ligands was evaluated by considering the distance of the Leu CO in the complex at 2.54 A, as shown by molecular models. Finally, carbon-Mn(II) distances were calculated and the molecular model of the 1:1 complex was built.  相似文献   

13.
The dependence of UV and CD spectra of oligonucleotide 3'-d(ApTpApTpApTpApTpApTp)-O(CH2)6O-5'-(pApTpApTpApTpApTp ApT) (eicosamer) in aqueous solution at pH 7 in the presence of 0.5 M NaCl on temperature and concentration was studied. It was shown that the eicosamer in concentrations below 5.10(-4) M forms a parallel stranded hairpin. From the thermal denaturation profile the thermodynamic parameters of parallel hairpin formation were determined. The values of delta H0, delta S0 and Tm were -90 +/- 8 kJ/mol, -300 +/- 20 J.mol-1.K-1 and 40.5 degrees C, respectively. The CD spectra of the parallel helix differ from those of B-form DNA by reduction of extreme magnitude at approximately 265 nm and appearance of a negative effect at approximately 285 nm.  相似文献   

14.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

15.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

16.
Optical melting curves of seven DNA dumbbells with the 16 base-pair duplex sequence 5'G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C3' linked on both ends by Tn (n = 2, 3, 4, 6, 8, 10, and 14) loops measured in 30, 70, and 120 mM Na+ are analyzed in terms of the numerically exact statistical thermodynamic model of DNA melting. The construction and characterization of these molecules were described in the previous paper (Amaratunga et al., 1992). As was recently reported for hairpins (T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight, 1990, Biopolymers, Vol. 29, pp. 1715-1734) theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting the parameters representing loop and circle formation to optimize the fits. The systematically determined empirical parameters provide evaluations of the free energies of hairpin loop formation delta Gloop (n) and single-strand circles delta Gcircle (N), as a function of end loop size, n = 2-14, and circle size, N = 32 + 2n. The dependence of these quantities on solvent ionic strength over the range from 30 to 120 mM Na+ was evaluated. An approximately analytical expression for the partition function Q(T) of the dumbbells was formulated that allowed a means for determining the transition enthalpy delta H degrees and entropy delta S degrees for every dumbbell, revealing the dependence of these quantities on loop size. In this multistate approach a manifold of partially melted intermediate microstates are considered and therefore no assumptions regarding the nature of the melting transitions (that they are two-state) are required. The transition thermodynamic parameters were also determined from a van't Hoff analysis of the melting curves. Comparisons between the results of the multistate analysis and the two-state van't Hoff analysis revealed significant differences for the dumbbells with larger end loops, indicating that the melting transitions of the larger looped dumbbells deviate considerably from two-state behavior. Results are then compared with published melting studies of much larger DNA dumbbells (D. B. Naritsin and Y. L. Lyubchenko, 1990, Journal of Biomolecular Structure and Dynamics, Vol. 8, pp. 1-13), of small hairpins (Paner et al., 1990; M. J. Doktycz, T. M. Paner, M. Amaratunga and A. S. Benight, 1990, Biopolymers, Vol. 30, pp. 829-845) and another dumbbell (A. S. Benight, J. M. Schurr, P. F. Flynn, B. R. Reid, and D. E. Wemmer, 1988) Journal of Molecular Biology, Vol. 200, pp. 377-399).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The kinetics of electron transfer between Fe(EDTA)2- and meso-tetra sulphonated phenyl porphyrin iron(III)-apomyoglobin have been studied by applying stopped-flow mixing and monitoring photometric changes at soret band (429 nm). The studies were carried out at pH's 6, 6.5, 7, 7.5, and 8 and at temperature between 10 and 40 degrees C. The mechanism proposed on the basis of the dependence of kobsd on Fe(EDTA)2- concentrations at various pH's, followed the rate equation: kobsd = ka[H+] + Kakb/[H+] + Ka.[Fe(EDTA)2-] The values of rate parameters calculated using a weighted non-linear least-squares analysis were: ka, 528 +/- 2 sec-1; kb, 25 +/- 1 sec-1; and Ka, 2.0 +/- 0.1 microM at 25 degrees C and 0.5 M sodium phosphate, and those of thermodynamic parameters calculated by the Eyring equation were: delta H*, 8.1 +/- 0.3 kcal mole-1 and delta S*, -23.4 +/- 1.1 eu at pH 7 and 0.5 M sodium phosphate.  相似文献   

18.
The kinetics of the reaction of Golfingia gouldii hemerythrin with O2 have been studied by stopped flow spectrophotometry. For the second order oxygenation process, k1 = 7.4 X 10(6) M-1 s-1, deltaH1++ = 8.2 kcal-mol-1 and deltaS1++ = +1 e.u. at 25 degrees, pH 8.2, and I = 0.015 M. The rate constant is unchanged when protein concentration is varied from 3 to 25 muM, the ionic strength is increased to 0.07 M, and the pH moved to 6.8. The deoxygenation of oxyhemerythrin is studied with stopped flow by scavenging liberated O2 with S2O4(2-). For the first order dissociation, k-1 = 51 s-1, deltaH-1++ = 20.6 kcal-mol-1 and deltaS-1++ = +19 e.u. at 25 degrees, pH 8.2, and I = 0.015 M. The value of k-1 is independent of [protein] = 50 to 200 muM, [S2O4(2-)] = 5 to 100 mM I = 0.015 to 0.30 M and pH 6.8 to 9.0. Using myoglobin instead of S2O4(2-) as scavenger gives similar results. Combination of activation parameters for the oxygenation and deoxygenation processes gives K1 = 1.5 X 10(5) M-1, deltaH = -12.4 kcal-mol-1, and deltaS = -18 e.u., values in good agreement with independent thermodynamic data. Perchlorate ion (0.05 M) enhances k-1 about 3-fold and hardly effects k1. There is no sign of other than a single reaction in either direction, and octameric hemerythrin apparently behaves kinetically as eight single units.  相似文献   

19.
Backbone dynamics of calcium-loaded calbindin D9k have been investigated by two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy, using a uniformly 15N enriched protein sample. Spin-lattice relaxation rate constants, spin-spin relaxation rate constants, and steady-state [1H]-15N nuclear Overhauser effects were determined for 71 of the 72 backbone amide 15N nuclei. The relaxation parameters were analyzed using a model-free formalism that incorporates the overall rotational correlation time of the molecule, and a generalized order parameter (S2) and an effective internal correlation time for each amide group. Calbindin D9k contains two helix-loop-helix motifs joined by a linker loop at one end of the protein and a beta-type interaction between the two calcium-binding loops at the other end. The amplitude of motions for the calcium-binding loops and the helices are similar, as judged from the average S2 values of 0.83 +/- 0.05 and 0.85 +/- 0.04, respectively. The linker region joining the two calcium-binding subdomains of the molecule has a significantly higher flexibility, as indicated by a substantially lower average S2 value of 0.59 +/- 0.23. For residues in the linker loop and at the C-terminus, the order parameter is further decomposed into separate order parameters for motional processes on two distinct time scales. The effective correlation times are significantly longer for helices I and IV than for helices II and III or for the calcium-binding loops. Residue by residue comparisons reveal correlations of the order parameters with both the crystallographic B-factors and amide proton exchange rates, despite vast differences in the time scales to which these properties are sensitive. The order parameters are also utilized to distinguish regions of the NMR-derived three-dimensional structure of calbindin D9k that are poorly defined due to inherently high flexibility, from poorly defined regions with average flexibility but a low density of structural constraints.  相似文献   

20.
We report thermodynamic values for binding of the guanosine nucleophile to the ribozyme derived from the Anabaena group I intron, and find that they are similar to those measured previously for the structurally distinct Tetrahymena ribozyme. The free energy of binding guanosine 5'-monophosphate (pG) at 30 degrees C is similar for the two ribozymes. The delta(H)degrees' and delta(S)degrees' for pG binding to the Anabaena ribozyme--RNA substrate complex (E x S) are 3.4 +/- 4 kcal/mol and 27 +/- 10 e.u., respectively. The negligible enthalpic contribution and positive entropy change were found previously for the Tetrahymena ribozyme, and are considered remarkable for a hydrogen-bonding interaction between a nucleotide and a nucleic acid. These thermodynamic values may reflect conformational changes or water release upon pG binding that are comparable for the two ribozymes. In addition, the apparent chemical steps of the two ribozyme reactions share similar activation energies and a positive deltaS++. It now appears that such thermochemical values for guanosine binding and activation may be intrinsic properties of the group I intron catalytic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号