共查询到20条相似文献,搜索用时 0 毫秒
1.
DAVID C. TURNER 《Differentiation; research in biological diversity》1978,10(1-3):81-93
2.
Intrinsic Innervation of the Chicken Lower Digestive Tract 总被引:2,自引:0,他引:2
Aisa J. Lahoz M. Serrano P. J. Junquera C. Peg M. T. Vera-Gil A. 《Neurochemical research》1997,22(12):1425-1435
We have studied the different components of the enteric nervous system in the rectum and cloaca of the chicken by means of hystochemical and immunohistochemical techniques. We found cholinergic neuronal bodies as well as nervous fibers, which constitute part of the Meissner and Auerbach plexuses. We also observed plentiful catecholaminergic fibers in both plexuses, though there were no catecholaminergic neuronal bodies. With respect to the Vasoactive Intestinal Peptide (VIP) and substance P (SP) positive peptidergic innervation, only positive fibers were found, which were less abundant than in the other zones of the gastrointestinal tract. The optic microscopy results were confirmed by electron microscopy. 相似文献
3.
Shuxian Jiang Byeong-Chel Lee Yigong Fu Shalom Avraham Bing Lim Hava Karsenty Avraham 《PloS one》2010,5(3)
Background
Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.Methodology/Principal Findings
To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Conclusions/Significance
Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate. 相似文献4.
研究不同的人胚胎干细胞系向限定性内胚层细胞分化能力是否存在差异,并尝试寻找造成差异的原因.基于已建立的人胚胎干细胞库资源和限定性内胚层定向诱导分化体系,流式检测诱导分化3天后10株细胞系Sox17的阳性比率发现其值在60%到80%之间波动,而SSEA4的阳性比率在人胚胎干细胞系中不存在明显差异.基因表达谱结果显示像Sox17,Foxa2等内胚层标记在这些细胞之间不存在显著的差异,而像MEG3和SNORD114-3在差异细胞系之间和同株细胞早晚期代数之间存在表达差异.结果提示不同的人胚胎干细胞系向限定性内胚层细胞分化能力存在着差异,推测这些差异可能与MEG3和SNORD114-3的差异表达相关. 相似文献
5.
6.
Sandro L. Pereira Mário Gr?os Ana Sofia Rodrigues Sandra I. Anjo Rui A. Carvalho Paulo J. Oliveira Ernest Arenas Jo?o Ramalho-Santos 《PloS one》2013,8(12)
The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation. 相似文献
7.
8.
9.
Because salicylates have been found to reduce the growth rate of cells of the human McCoy cell line (ref. 1 and unpublished results of T. F. Paine) and because they may be consumed in large quantities by women during early pregnancy2, we decided to examine their effects on human embryonic cells. 相似文献
10.
《Cell communication & adhesion》2013,20(3):217-230
This paper describes the expression profile of the CD44 glycoprotein during differentiation of embryonal carcinoma (EC) and embryonic stem (ES) cells. We have recently shown that CD44 is expressed in discrete embryonic structures and, in view of this, we sought an in vitro differentiation model of development in which we could study more readily the structure and function of the CD44 molecule. The P19 EC and CGR8 ES cells were chosen as they have the capacity to develop down the cardiac muscle pathway and we have previously demonstrated that CD44 is expressed abundantly in the embryonic myocardium. The differentiation process in both cell types is accompanied by an induction of CD44 mRNA and protein. However, in differentiated cultures CD44 is not expressed in contractile cells, indicating that these P19 cells do not represent CD44-positive embryonic cardiomyocytes. Expression of CD44 is observed on fibroblast-like cells which appear to migrate over and out from the plated aggregates. Hyaluronan, the major ligand for CD44, is also associated with these CD44-positive fibroblast-like cells. It is suggested that expression of both receptor and ligand by the fibroblastic cells is required for cell:matrix adhesion and cell motility. As CD44 is up-regulated in these cultures, P19 cells are now established as a useful model system to study the factors regulating expression of the CD44 gene. 相似文献
11.
Kotaro Sugimoto Naoki Ichikawa-Tomikawa Seiro Satohisa Yushi Akashi Risa Kanai Tsuyoshi Saito Norimasa Sawada Hideki Chiba 《PloS one》2013,8(10)
During epithelialization, cell adhesions and polarity must be established to maintain tissue assemblies and separate the biological compartments in the body. However, the molecular basis of epithelial morphogenesis, in particular, a role of cell adhesion molecules in epithelial differentiation from stem cells, remains unclear. Here, we show that the stable and conditional expression of a tight-junction protein, claudin-6 (Cldn6), triggers epithelial morphogenesis in mouse F9 stem cells. We also demonstrate that Cldn6 induces the expression of other tight-junction and microvillus molecules including Cldn7, occludin, ZO-1α+, and ezrin/radixin/moesin-binding phosphoprotein50. These events were inhibited by attenuation of Cldn6 using RNA interference or the C-terminal half of Clostridium Perfringens enterotoxin. Furthermore, similar results were obtained in mouse embryonic stem cells. Thus, we have uncovered that the Cldn6 functions as a novel cue to induce epithelial differentiation. 相似文献
12.
利用石蜡切片、苏木素-伊红(H.E)和阿利新兰-高碘酸雪夫试剂(AB-PAS,AB,pH 2.5)组化染色技术研究圆尾鲎(Carcinoscorpius rotundicauda)消化道组织结构及其黏液细胞的分布特征。圆尾鲎消化道外形为一直管状,中肠部位有分支。H.E染色结果显示,食道、胃、幽门、中肠与后肠的管壁一般结构由外至内分为外膜、肌肉层、黏膜下层、黏膜层。食道是一段短管状结构,肌肉层较胃壁的薄但几丁质层极厚。胃则为一膨大的砂囊结构,内含一定数量的纵行黏膜皱褶,肌肉纤维排列整齐,几丁质层较薄。幽门与中肠套叠,幽门壁肌肉层很薄,几丁质层清晰可见。中肠和后肠结构差异不大,具有一定数量的黏膜皱褶,上皮细胞间分布比较多的黏液细胞,均无几丁质层。AB-PAS组化染色结果显示,消化道有Ⅰ和Ⅱ型两种黏液细胞,不同部位分布数量差别很大。食道和幽门未见黏液细胞。胃黏膜下层有少量Ⅱ型黏液细胞。中肠和后肠黏液细胞数量比较多,尤其是与幽门套叠的中肠前端区域,均以Ⅱ型黏液细胞为主,主要分布在黏膜下层和黏膜上皮。在后肠黏膜下层有Ⅰ型黏液细胞分布,而黏膜上皮则分布密集的Ⅱ型黏液细胞。圆尾鲎消化道组织结构及黏液细胞分布特征反映其不同部位功能的差别,体现食性与消化机能相协调的特点。 相似文献
13.
Iglesias-Bartolome R Patel V Cotrim A Leelahavanichkul K Molinolo AA Mitchell JB Gutkind JS 《Cell Stem Cell》2012,11(3):401-414
The integrity of the epidermis and mucosal epithelia is highly dependent on resident self-renewing stem cells, which makes them vulnerable to physical and chemical insults compromising the repopulating capacity of the epithelial stem cell compartment. This is frequently the case in cancer patients receiving radiation or chemotherapy, many of whom develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Here, we show that inhibiting the mammalian target of rapamycin (mTOR) with rapamycin increases the clonogenic capacity of primary human oral keratinocytes and their resident self-renewing cells by preventing stem cell senescence. This protective effect of rapamycin is mediated by the increase in expression of?mitochondrial superoxide dismutase (MnSOD), and the consequent inhibition of ROS formation and oxidative stress. mTOR inhibition also protects from the loss of proliferative basal epithelial stem cells upon ionizing radiation in?vivo, thereby preserving the integrity of the oral mucosa and protecting from radiation-induced mucositis. 相似文献
14.
Embryonic stem cells (ESC) hold the promise of overcoming many diseases as potential sources of, for example, dopaminergic neural cells for Parkinson’s Disease to pancreatic islets to relieve diabetic patients of their daily insulin injections. While an embryo has the innate capacity to develop fully functional differentiated tissues; biologists are finding that it is much more complex to derive singular, pure populations of primary cells from the highly versatile ESC from this embryonic parent. Thus, a substantial investment in developing the technologies to expand and differentiate these cells is required in the next decade to move this promise into reality. In this review we document the current standard assays for characterising human ESC (hESC), the status of ‘defined’ feeder-free culture conditions for undifferentiated hESC growth, examine the quality controls that will be required to be established for monitoring their growth, review current methods for expansion and differentiation, and speculate on the possible routes of scaling up the differentiation of hESC to therapeutic quantities. 相似文献
15.
定向诱导小鼠ES细胞向心肌细胞的分化 总被引:4,自引:0,他引:4
为了提高体外诱导ES细胞向心肌细胞分化的效率 ,对以往的诱导方法加以改进 ,采用直接悬浮培养和 0 8%DMSO诱导 ,建立了简便、高效的定向诱导ES细胞向心肌细胞分化的体系 .诱导第 9d起可见自发性、有节律跳动的类胚体出现 ,第 14d达到高峰 ,约有 70 %的拟胚体产生跳动 .用RT PCR的方法在跳动的拟胚体中检测到心肌细胞特异性标志物的表达 ,采用免疫荧光染色的方法在蛋白水平检测到心肌特异的α辅肌动蛋白 (α actinin)的表达 ,并可见清晰肌小节 ,表明在改进的体外诱导条件下ES细胞可分化为成熟的心肌细胞 . 相似文献
16.
17.
18.
19.
Aya Obana-Koshino Hitomi Ono Jiro Miura Manabu Sakai Hitoshi Uchida Wataru Nakamura Kanji Nohara Yusuke Maruyama Atsuhiko Hattori Takayoshi Sakai 《PloS one》2015,10(4)
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. 相似文献
20.
《Journal of liposome research》2013,23(4):539-549
AbstractStreptococcus pneumoniae was shown to be capable of lysing A549 cells in culture. Membrane damage to cells as assessed by trypan blue exclusion increased with increasing concentration of bacteria. After 45 min of incubation with 7.5 × 108 bacteria/ml less than 20% of A549 cells excluded trypan blue. The lytic activity of S. pneumoniae was inhibited by phosphatidylcholine liposomes containing cholesterol. Using an haemolysis assay and S. pneumoniae's culture filtrates, the efficiency of the anti-lytic activity of liposomes was found to be distearoylphosphatidylcholine (DSPC) > dipalmitoylphosphatidylcho-line (DPPC) > dimyristoylphosphatidylcholine (DMPC). Furthermore, the anti-lytic activity also depended on the cholesterol content in a non-trivial manner. There was no protection against haemolytic activity at cholesterol content of less than 20% for DSPC and 35 mole% for DPPC and DMPC liposomes respectively. Above these threshold values inhibition of lytic activity increased sharply. In agreement with the haemolysis results, A549 cells were protected by liposomes against the lytic activity of S. pneumoniae with the efficiency also being DSPC > DPPC > DMPC. Clearly the efficiency of liposomal cholesterol is increased with increasing gel to liquid crystalline phase transition temperature of the lipid matrix. The results suggest that liposomal cholesterol may be used to protect the host against cell damage caused by S. pneumoniae. 相似文献