首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial cells can be differentially separated from soil colloids on the basis of their buoyant densities. By using this principle, a modified sucrose gradient centrifugation protocol has been developed for separating bacterial cells from most of the soil colloids. Since the bacterial cell suspension still contained some colloidal soil particles, which inhibited polymerase chain reaction amplification, a new "double" polymerase chain reaction method of analysis was adopted for amplification of Tn5-specific gene sequences. This new protocol allowed rapid detection of small numbers (1 to 10 CFU/g) of bacterial cells present in soil samples.  相似文献   

2.
Microbial assessment of natural biodiversity is usually achieved through polymerase chain reaction (PCR) amplification. Deoxyribonucleic acid (DNA) sequences from natural samples are often difficult to amplify because of the presence of PCR inhibitors or to the low number of copies of specific sequences. In this study, we propose a non-specific preamplification procedure to overcome the presence of inhibitors and to increase the number of copies prior to carrying out standard amplification by PCR. The pre-PCR step is carried out through a multiple displacement amplification (MDA) technique using random hexamers as priming oligonucleotides and phi 29 DNA polymerase in an isothermal, whole-genome amplification reaction. Polymerase chain reaction amplification using specific priming oligonucleotides allows the selection of the sequences of interest after a preamplification reaction from complex environmental samples. The procedure (MDA-PCR) has been tested on a natural microbial community from a hypogean environment and laboratory assemblages of known bacterial species, in both cases targeting the small subunit ribosomal RNA gene sequences. Results from the natural community showed successful amplifications using the two steps protocol proposed in this study while standard, direct PCR amplification resulted in no amplification product. Amplifications from a laboratory assemblage by the two-step proposed protocol were successful at bacterial concentrations >or= 10-fold lower than standard PCR. Amplifications carried out in the presence of different concentrations of fulvic acids (a soil humic fraction) by the MDA-PCR protocol generated PCR products at concentrations of fulvic acids over 10-fold higher than standard PCR amplifications. The proposed procedure (MDA-PCR) opens the possibility of detecting sequences represented at very low copy numbers, to work with minute samples, as well as to reduce the negative effects on PCR amplifications of some inhibitory substances commonly found in environmental samples.  相似文献   

3.
A rapid, simple method is used that yields amplifiable fungal and bacterial DNAs directly from soil. DNA is separated from soil contaminants by electrophoresis in low-melting-temperature agarose and used directly in polymerase chain reaction amplification. Fifty 20-mg samples can be processed in one day. Fragments of 16S and 18S ribosomal RNAs are amplified by polymerase chain reaction with DNA extracted from the soil. Universal primers are used that are capable of amplifying ribosomal DNA from a wide variety of bacteria and fungi. Eubacterial and fungal primers are used that are capable of distinguishing between eubacterial and fungal DNAs. Restriction enzyme digests are performed on amplified DNA fragments from five soil samples.  相似文献   

4.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

5.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

6.
Abstract: A combined polymerase chain reaction amplification and reverse dot blot assay was designed for the detection of bacterial genes from soil and sediments. Total nucleic acids were directly extracted from soil using a lysozyme/sodium dodecyl sulfate/freeze-thaw method followed by rapid purification through gel electrophoresis. DNA was amplified using a highly stringent polymerase chain reaction with primers directed against the nahR regulatory gene present in plasmid NAH7 of Pseudomonas putida G7. The resulting amplification product was detected colorimetrically by reverse dot blot with an improved sensitivity ten-fold greater than traditional ethidium bromide staining after gel electrophersis. A lower limit of 103, P. putida G7 cfu (g soil)−1 was detected. This method was successfully employed to detect indigenous naphthalene-degrading bacteria from subsurface sediment collected from different locations of a naphthalene-contaminated site. Similar approaches could be developed for other soil-borne genetic markers.  相似文献   

7.
A protocol is presented for direct polymerase chain reaction (PCR) amplification of DNA from chicken nucleated red blood cells. Chicken blood in EDTA was found to have a strong inhibitory effect on the PCR. Consequently, PCR using this protocol should be performed only on a narrow range of blood volumes, from 0125 to 025 |ll.  相似文献   

8.
A rapid and sensitive method for the detection of genetically engineered microorganisms in soil and sediments has been devised by in vitro amplification of the target DNAs by a polymerase chain reaction. A cloned catechol 2,3-dioxygenase gene located on the recombinant plasmid pOH101 was transferred to Pseudomonas putida MMB2442 by triparental crossing and used as a target organism. For the polymerase chain reaction from soil and sediment samples, the template DNA was released from a 100-mg soil sample. Bacterial seeded soil samples were washed with Tris-EDTA buffer (pH 8.0) and treated with a detergent lysis solution at 100°C. After addition of 1% polyvinylpolypyrrolidine solution, the samples were boiled for 5 min. Supernatant containing nucleic acid was purified with a PCR purification kit. The purified DNA was subjected to polymerase chain reaction, using two specific primers designed for the amplification of catechol 2,3-dioxygenase gene sequences. The detection limit was 102 cells per gram of soil. This method is rapid and obviates the need for lengthy DNA purification from soil samples. Received 28 February 1997/ Accepted in revised form 23 November 1997  相似文献   

9.
Abstract A polymerase chain reaction amplification of 23S rDNA was developed to identify Bacillus spp. recovered from roots, mycorrhizae, and rhizosphere soil of conifers. The polymerase chain reaction incorporated a conserved 23S rDNA forward primer in combination with a reverse primer designed to hybridize exclusively to nucleotide sequences of either B. polymyxa or B. mycoides . The amplification provided a rapid and simple means of identifying DNA from isolates of Bacillus , and could be used directly on whole Bacillus cells or mixed populations. The reaction was used to detect and differentiate these Gram-positive species from agar plates inoculated with samples from various conifer samples. A strain-specific primer was also synthesized and used to identify Bacillus which were established within conifer roots 4 weeks after inoculation.  相似文献   

10.
Limitations in obtaining sufficient specimens and difficulties in extracting high quality DNA from environmental samples have impeded understanding of the structure of microbial communities. In this study, multiple displacement amplification (MDA) using phi29 polymerase was applied to overcome these hindrances. Optimization of the reaction conditions for amplification of the bacterial genome and evaluation of the MDA product were performed using cyanobacterium Synechocystis sp. strain PCC6803. An 8-h MDA reaction yielded a sufficient quantity of DNA from an initial amount of 0.4 ng, which is equivalent to approximately 10(5) cells. Uniform amplification of genes randomly selected from the cyanobacterial genome was confirmed by real-time polymerase chain reaction. The metagenome from bacteria associated with scleractinian corals was used for whole-genome amplification using phi29 polymerase to analyse the microbial diversity. Unidentified bacteria with less than 93% identity to the closest 16S rDNA sequences deposited in DNA Data Bank of Japan were predominantly detected from the coral-associated bacterial community before and after the MDA procedures. Sequencing analysis indicated that alpha-Proteobacteria was the dominant group in Pocillopora damicornis. This study demonstrates that MDA techniques are efficient for genome wide investigation to understand the actual microbial diversity in limited bacterial samples.  相似文献   

11.
Genomic DNA Amplification from a Single Bacterium   总被引:11,自引:0,他引:11       下载免费PDF全文
Genomic DNA was amplified about 5 billion-fold from single, flow-sorted bacterial cells by the multiple displacement amplification (MDA) reaction, using 29 DNA polymerase. A 662-bp segment of the 16S rRNA gene could be accurately sequenced from the amplified DNA. MDA methods enable new strategies for studying nonculturable microorganisms.  相似文献   

12.
13.
A simple and effective protocol is described for multiplex polymerase chain reaction (PCR) amplification of single cells of Karenia brevis. The protocol requires minimum processing, avoids additions that might dilute target DNA template, and can be used on cells preserved in Lugol’s iodine preservative. Destaining of Lugol’s-preserved cells with sodium thiosulfate allowed successful amplification of single-copy, nuclear-encoded microsatellites in single cells of K. brevis that have been preserved for up to 6 years.  相似文献   

14.
PCR-generated artefact from 16S rRNA gene-specific primers   总被引:2,自引:0,他引:2  
Artefacts consisting of concatenated oligonucleotide primer sequences were generated during sub-optimally performing polymerase chain reaction amplification of bacterial 16S rRNA genes using a commonly employed primer pair. These artefacts were observed during amplification for terminal restriction fragment length polymorphism analyses of complex microbial communities, and after amplification from DNA from a microbial culture. Similar repetitive motifs were found in gene sequences deposited in GenBank. The artefact can be avoided by using different primers for the amplification reaction.  相似文献   

15.
A simple and rapid method of DNA extraction from soil was developed and DNA was made suitable for subsequent efficient amplification by the polymerase chain reaction (PCR). Key features of the extraction and purification were cold lysozyme- and SDS-assisted lysis with either freezing-thawing or bead beating, cold phenol extraction of the resulting soil suspension, CsCl and KAc precipitation and, finally, spermine-HCl or glass milk purification of DNA. Crude DNA preparations contained 4–20 μg DNA per g of soil extracted, and at least 50% of this was recovered in the final purified DNA preparations. The resulting DNA was pure enough to be restricted by various enzymes, and was amplifiable at concentrations of up to 20 ng of soil-derived DNA per 50 μl reaction mix.
Amplification of a 683 bp target sequence, pat, was performed with different Taq DNA polymerases. Application of the protocol enabled us to detect target DNA derived from roughly 103 introduced Pseudomonas fluorescens (RP4 :: pat ) cfu per g of soil. The fate of an introduced population in the soil could be followed to this limit with PCR-assisted detection of target DNA. In addition, target DNA was detected in soil 5 months after release, when the introduced organism was no longer detectable on selective agar plates.
The extraction and purification protocol applied to various different soil types resulted in DNA of sufficient purity to permit amplification by PCR.  相似文献   

16.
Telomerase activity in cancer cells is commonly analyzed by a polymerase chain reaction (PCR)-based assay termed the telomeric repeat amplification protocol (TRAP). However, nonspecific inhibition of Taq polymerase during the PCR step is frequently observed in inhibitor analysis or drug screening. Thus, the removal of excess inhibitors prior to PCR is an essential step for the proper evaluation of telomerase inhibitory effects. Here, a size exclusion spin column was applied to remove small molecular weight inhibitors from the telomerase extension products. The spin column-added protocol, termed sTRAP, provides a more reliable estimation of the inhibitory effects of telomerase activity.  相似文献   

17.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

18.
Six new microsatellite loci were isolated and characterized in 32 individuals from a farm population of gilthead seabream (Sparus aurata). Expected heterozygosity at all loci was high, ranging from 0.835 to 0.958 with between 10 and 27 alleles per locus. A multiplex polymerase chain reaction protocol was developed using four of the loci. Cross‐species amplification of the loci was tested in six species of the Sparidae family and four loci were successfully amplified in two or more related species.  相似文献   

19.
20.
We describe a rapid, low-toxicity and simple method for the detection of the bacterial fish pathogen Flavobacterium psychrophilum. The method, based on the polymerase chain reaction (PCR), combined the electrophoresis of PCR products in a vertical agarose gel and a modified methylene blue stain. DNA was amplified directly either from bacterial suspensions or from tissues experimentally infected with F. psychrophilum, using different non-toxic commercial DNA extraction kits. The protocol allowed to detect 15 to 150 cells of the pathogen in bacterial suspension, without prior DNA extraction, and 7500 to 75,000 cells in seeded spleen tissue and ovarian fluid using Dynabeads DNA DIRECT extraction system. This method, which has the advantage of not using hazardous products, is proposed as a fast tool for routine identification of F. psychrophilum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号