首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human endothelial activity of ecto-5′-nucleotidase (E5′N) is several times higher than in pig endothelial cells. This may have implication for xenotransplantation due to the role this enzyme plays in conversion of pro-inflammatory and pro-aggreggatory nucleotides into anti-inflammatory and anti-aggregatory adenosine. We have shown in this study that human E5′N can be functionally expressed in pig endothelial cells leading to increased adenosine production from both extracellular AMP and ATP. We suggest that E5′N expression in transgenic pigs for xenotransplantation may help to prolong graft survival.  相似文献   

2.
Ecto-5'-nucleotidase (E5'N) is an extracellular enzyme forming anti-inflammatory and immunosuppressive adenosine. We evaluated whether confrontation of pig heart and endothelial cells with human blood changes the activity of E5'N. Pig hearts were perfused ex vivo with fresh human blood for 4 h. Pig aortic endothelial cells (PAEC) were incubated in vitro with human plasma for 3 h. Ex vivo perfusion of pig heart with fresh human blood resulted in a decrease in E5'N activity to 62% and 61% of initial in wild-type and transgenic pig hearts, respectively. PAEC activity of E5'N decreased to 71% and 50% of initial after 3 h exposure to heat-inactivated and active complement human plasma, respectively, while it remained constant in controls. Pig heart activity of E5'N decreased following exposure to human blood, which may affect adenosine production and exacerbate hyperacute and vascular rejection.  相似文献   

3.
The endothelial cell surface expression of ecto-5'-nucleotidase (E5'N, CD73) is thought to be essential for the extracellular formation of cytoprotective, anti-thrombotic and immunosuppressive adenosine. Decreased E5'N activity may play a role in xenograft acute vascular rejection, preventing accommodation and tolerance mechanisms. We investigated the extent of changes in E5'N activity and other enzymes of purine metabolism in porcine hearts or endothelial cells when exposed to human blood or plasma and studied the role of humoral immunity in this context. Pig hearts, wild type (WT, n = 6) and transgenic (T, n = 5) for human decay accelerating factor (hDAF), were perfused ex vivo with fresh human blood for 4 h. Pig aortic endothelial cells (PAEC) were exposed for 3 h to autologous porcine plasma (PP), normal (NHP) or heat inactivated human plasma (HHP), with and without C1-inhibitor. Enzyme activities were measured in heart or endothelial cell homogenates with an HPLC based procedure. The baseline activity of E5'N in WT and T porcine hearts were 6.60 +/- 0.33 nmol/min/mg protein and 8.54 +/- 2.10 nmol/min/mg protein respectively (P < 0.01). Ex vivo perfusion of pig hearts with fresh human blood for 4 h resulted in a decrease in E5'N activity to 4.01 +/- 0.32 and 4.52 +/- 0.52 nmol/min/mg protein (P < 0.001) in WT and T hearts respectively, despite attenuation of hyperacute rejection in transgenic pigs. The initial PAEC activity of E5'N was 9.10 +/- 1.40 nmol/min/mg protein. Activity decreased to 6.76 +/- 0.57 and 4.58 +/- 0.47 nmol/min/mg protein (P < 0.01) after 3 h exposure of HHP and NHP respectively (P < 0.05), whereas it remained unchanged at 9.62 +/- 0.88 nmol/min/mg protein when incubated with PP controls. C1-inhibitor partially preserved E5'N activity, similar to the effect of HHP. Adenosine deaminase, adenosine kinase and AMP deaminase (other enzymes of purine metabolism) showed a downward trend in activity, but none were statistically significant. We demonstrate a specific decrease in E5'N activity in pig hearts following exposure to human blood which impairs adenosine production resulting in a loss of a cytoprotective phenotype, contributing to xenograft rejection. This effect is triggered by human humoral immune responses, and complement contributes but does not fully mediate E5'N depletion.  相似文献   

4.
Xenotransplantation is one be possible solution for a severe shortage of human organs available for transplantation. However, only a few studies addressed metabolic compatibility of transplanted animal organs. Our aim was to compare activities of adenosine metabolizing enzymes in the heart of different species that are relevant to clinical or experimental xenotransplantation. We noted fundamental differences: ecto-5′nucleotidease (E5′N) activity was 4-fold lower in pig and baboon hearts compared to the human hearts while mouse activity was compatible with human and rat activity was three times higher than human. There also were significant differences in AMP-deaminase (AMPD), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) activities. We conclude that differences in nucleotide metabolism may contribute to organ dysfunction after xenotransplantation.  相似文献   

5.
Xenotransplantation is one be possible solution for a severe shortage of human organs available for transplantation. However, only a few studies addressed metabolic compatibility of transplanted animal organs. Our aim was to compare activities of adenosine metabolizing enzymes in the heart of different species that are relevant to clinical or experimental xenotransplantation. We noted fundamental differences: ecto-5' nucleotidease (E5' N) activity was 4-fold lower in pig and baboon hearts compared to the human hearts while mouse activity was compatible with human and rat activity was three times higher than human. There also were significant differences in AMP-deaminase (AMPD), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) activities. We conclude that differences in nucleotide metabolism may contribute to organ dysfunction after xenotransplantation.  相似文献   

6.
Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors. Ecto-5′-nucleotidase (E5′N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.  相似文献   

7.
Adenine nucleosides and nucleotides are important signaling molecules involved in control of key mechanisms of xenotransplant rejection. Extracellular pathway that converts ATP and ADP to AMP, and AMP to adenosine mainly mediated by ecto-nucleoside triphosphate diphosphohydrolase 1, (ENTPD1 or CD39) and ecto-5′-nucleotidase (E5NT or CD73) respectively, is considered as important target for xenograft protection. To clarify feasibility of combined expression of human ENTPD1 and E5NT and to study its functional effect we transfected pig endothelial cell line (PIEC) with both genes together. To do this we have produced a dicistronic construct bearing F2A sequence in frame between human E5NT and human ENTPD1 coding sequences. PIEC cells were mock-transfected as transfection control or transfected with plasmids encoding human ENTPD1 or human E5NT. PIEC cells were exposed to 50 μM ATP or 50 μM ADP or 50 μM AMP. Conversion of extracellular substrates into products (ATP/ADP/AMP/adenosine) was measured by HPLC in the media collected at specific time intervals. Following addition of AMP, production of adenosine in the medium of E5NT/ENTPD1- and E5NT- transfected cells increased to 14.2 ± 1.1 and 24.5 ± 3.4 μM respectively while it remained below 1 μM in controls and in ENTPD1-transfected cells. A marked increase of adenosine formation from ADP or ATP was observed only in E5NT/ENTPD1-transfected cells (11.7 ± 0.1 and 5.7 ± 2.2 μM respectively) but not in any other condition studied. This study indicates feasibility and functionality of combined expression of human E5NT and ENTPD1 in pig endothelial cells using F2A sequence bearing construct.  相似文献   

8.
Complement activation mediated by the major xenogeneic epitope in the pig, galactosyl-alpha(1-3) galactosyl sugar structure (alpha-Gal), and human natural antibodies could cause hyperacute rejection (HAR) in pig-to-human xenotransplantation. The same reaction on viruses bearing alpha-Gal may serve as a barrier to zoonotic infection. Expressing human complement regulatory proteins or knocking out alpha-Gal epitopes in pig in order to overcome HAR may therefore pose an increased risk in xenotransplantation with regard to zoonosis. We investigated whether amphotropic murine leukemia virus, porcine endogenous retrovirus, and vesicular stomatitis virus (VSV) budding from primary transgenic pig aortic endothelial (TgPAE) cells expressing human CD55 (hCD55 or hDAF) was protected from human-complement-mediated inactivation. VSV propagated through the ST-IOWA pig cell line, in which alpha-galactosyl-transferase genes were disrupted (Gal null), was also tested for sensitivity to human complement. The TgPAE cells were positive for hCD55, and all pig cells except the Gal-null ST-IOWA expressed alpha-Gal epitopes. Through antibody binding, we were able to demonstrate the incorporation of hCD55 onto VSV particles. Viruses harvested from TgPAE cells were relatively resistant to complement-mediated inactivation by the three sources of human sera tested. Additionally, VSV from Gal-null pig cells was resistant to human complement inactivation. Such protection of enveloped viruses may increase the risk of zoonosis from pigs genetically modified for pig-to-human xenotransplantation.  相似文献   

9.
1. The relationship between the activity of adenosine metabolizing enzymes 5'nucleotidase (5'N), adenosine kinase (A.K.) and adenosine deaminase (A.D.) with basal and insulin-stimulated glucose transport in isolated fat cells from young and old animals was studied at 08:00 and 16:00 hr. 2. In cells from young animals a larger insulin-stimulation of glucose transport was observed at 16:00 hr than at 08:00 hr. Also at 16:00 hr small changes in 5'N, A.K. and A.D. activities suggest a decrease in adenosine formation. 3. In the cells from old animals no effect of insulin was observed at any time, while a 3-5-fold increase in 5'N indicated a predominance of adenosine formation at both times studied. 4. An inverse relationship was observed in the changes of adenosine metabolism and insulin action.  相似文献   

10.
The function of 5'-nucleotidase in nucleoside uptake from AMP was investigated in human lymphocytes by comparing the transport in cells containing this enzyme (5'N+) with that in cells deficient in the activity (5'N-). The rate of adenosine and Pi uptake from AMP was 3.9-fold greater in the 5'N+ then in the 5'N- lymphocytes. There was no difference in transport between these cells when incubated with adenosine or Pi. These results indicate that phosphorylytic cleavage of AMP by 5'-nucleotidase is necessary for the uptake of the nucleotide and Pi moieties by the human lymphocyte.  相似文献   

11.
We compared the properties of the ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5'-nucleotidase, EC 3.1.3.5) in intact pig aortic smooth-muscle cells in culture with the properties that we previously investigated for ectonucleotidases of aortic endothelial cells [Cusack, Pearson & Gordon (1983) Biochem. J. 214, 975-981]. In experiments with nucleotide phosphorothioate diastereoisomers, stereoselective catabolism of adenosine 5'-[beta-thio]triphosphate, but not of adenosine 5'-[alpha-thio]triphosphate, by the triphosphatase and stereoselective catabolism of adenosine 5'-[alpha-thio]diphosphate by the diphosphatase were found, as occurs in endothelial cells. In contrast with endothelial ecto-5'-nucleotidase, the smooth-muscle-cell enzyme catabolized adenosine 5'-monophosphorothioate (AMPS) to adenosine: the affinity of the enzyme for AMPS was greater than for AMP, and Vmax for AMPS was about one-sixth that for AMP. In both cell types AMPS was an apparently competitive inhibitor of AMP catabolism by 5'-nucleotidase. The relative rates of catabolism of nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety were similar to those in endothelial cells. No ectopyrophosphatase activity was detected in smooth-muscle cells, in contrast with endothelial cells, where modest activity is present.  相似文献   

12.
反义RNA对猪α-1,3-半乳糖苷转移酶活性的影响   总被引:1,自引:0,他引:1  
 α 1,3 半乳糖表位是猪 人异种移植超急性排斥反应的主要抗原 ,由α 1,3 半乳糖苷转移酶催化合成 .用RT PCR方法扩增中国实验用小型猪α 1,3 半乳糖苷转移酶cDNA的前 582bp ,测定碱基序列并构建其反义表达载体pLXRN ,将其转染入猪主动脉内皮细胞 .NorthernBlotting表明α 1,3 半乳糖苷转移酶mRNA减少 .检测α 1,3 半乳糖苷转移酶活性表明 ,反义RNA可使其活性下降32 2 % .研究结果表明可能通过反义RNA来抑制猪 人异种移植超急性排斥反应  相似文献   

13.
Galalpha1-3Gal is the major xenoantigenic epitope responsible for hyperacute rejection upon pig to human xenotransplantation. Endo-beta-galactosidase C from Clostridium perfringens destroys the antigenic epitope by cleaving the beta-galactosidic linkage in the Galalpha1-3Galbeta1-4GlcNAc structure. Based on partial peptide sequences of the enzyme, we molecularly cloned the enzyme gene, which encodes a protein with a predicted molecular mass of about 93 kDa. The deduced protein sequence of the enzyme has limited homology in the C-terminal half with endo-beta-galactosidase from Flavobacterium keratolyticus and beta-1,3-glucanases. The enzyme expressed in Escherichia coli removed the alpha-galactosyl epitope nearly completely from pig erythrocytes and from pig aortic endothelial cells. The enzyme-treated endothelial cells in culture were greatly reduced in cell surface antigens, which were recognized by IgM, IgG, or IgA in human sera, and became much less susceptible to complement-mediated cytotoxicity caused by human sera. When the pig kidney was perfused with the enzyme, the vascular endothelial cells became virtually devoid of the alpha-galactosyl epitope, with concomitant decrease in binding to IgM in human plasma. These results demonstrated that the recombinant endo-beta-galactosidase C is a valuable aid in xenotransplantation.  相似文献   

14.
Complement is an efficient defense mechanism of innate immunity. Factor H is the central complement regulator of the alternative pathway, acting in the fluid-phase and on self surfaces. Pigs are considered a suitable source for xenotransplantation and thus several membrane-bound pig complement regulators with importance for the acute rejection phase have been investigated. However, pig fluid-phase regulators have not been described so far. We report the cloning, expression and functional characterization of pig factor H. After constructing a pig liver cDNA library, a full-length factor H cDNA was isolated and sequenced. The predicted protein is organized in 20 short consensus repeat (SCR) domains and has an overall identity of 62% to the human protein. For functional characterization, three deletion constructs of pig factor H were expressed in insect cells. Pig factor H construct SCR 1–4 has cofactor activity for factor I-mediated cleavage of human C3b, which is similar to the human regulator. In addition, this N-terminal construct binds to human C3b, while a construct consisting of SCR 15–20 showed a weaker binding to human C3b/C3d. Pig factor H has two major binding sites for heparin, as the two constructs representing SCR 1–7 and SCR 15–20 proteins, but not the SCR 1–4 protein, bind heparin. The C-terminal construct is able to bind to human endothelial cells, as assayed by FACS. We show that pig and human factor H share functional characteristics in complement regulation and cell surface binding. Possible consequences of using pig livers for xenotransplantation are discussed.The nucleotide sequence data reported are available in the EMBL database (accession number AJ278470)  相似文献   

15.
Pig endothelial cells are the first cells to interact with human immune components after organ xenotransplantation, which is a procedure currently considered to be the best treatment option for end-stage organ failure. It is, therefore, essential to study the mechanisms of molecular interaction between pig endothelial cells and human immune components, in order to overcome xenograft rejection. The aim of this study was to establish immortalized pig aortic endothelial cell lines, in order to facilitate future in vitro studies of human anti-pig immune responses. Endothelial cell lines were established following the transfection of primary endothelial cells isolated from the aortas of the Minnesota miniature pig with plasmid pRNS-1 carrying genes for neomycin resistance and the SV40 large T antigen. The immortalized cell lines showed a relatively rapid doubling time (17.6h) and the endothelial cell phenotype, as indicated by the formation of typical cobblestone monolayers and by the constitutive expression of PECAM-1 and the von Willebrand factor. Flow cytometric analysis demonstrated the constitutive expression of SLA class I and CD86, whereas the expression of E-selectin and SLA class II was only induced after stimulation with human TNF-alpha and pig IFN-gamma, respectively. On the other hand, no CD80 expression was detected in the primary cells or cell lines in the presence or absence of either human TNF-alpha or pig IFN-gamma. A vigorous human T cell proliferation against these cell lines was observed in the mixed lymphocyte-endothelial cell culture. These results suggest that pig endothelial cells, immortalized by the introduction of SV40 T, retain their original characteristics, except for the acquired property of immortalization, and that they may be useful for future in vitro studies of xenogeneic human anti-pig immune responses.  相似文献   

16.
Purine salvage pathways in cultured endothelial cells of macrovascular (pig aorta) and microvascular (guinea pig coronary system) origin were investigated by measuring the incorporation of radioactive purine bases (adenine or hypoxanthine) or nucleosides (adenosine or inosine) into purine nucleotides. These precursors were used at initial extracellular concentrations of 0.1, 5, and 500 microM. In both types of endothelial cells, purine nucleotide synthesis occurred with all four substrates. Aortic endothelial cells salvaged adenine best among purines and nucleosides when applied at 0.1 microM. At 5 and 500 microM, adenosine was the best precursor. In contrast, microvascular endothelial cells from the coronary system used adenosine most efficiently at all concentrations studied. The synthetic capacity of salvage pathways was greater than that of the de novo pathway. As measured using radioactive formate or glycine, de novo synthesis of purine nucleotides was barely detectable in aortic endothelial cells, whereas it readily occurred in coronary endothelial cells. Purine de novo synthesis in coronary endothelial cells was inhibited by physiological concentrations of purine bases and nucleosides, and by ribose or isoproterenol. The isoproterenol-induced inhibition was prevented by the beta-adrenergic receptor antagonist propranolol. The end product of purine catabolism in aortic endothelial cells was found to be hypoxanthine, whereas coronary endothelial cells degraded hypoxanthine further to xanthine and uric acid, a reaction catalyzed by the enzyme xanthine dehydrogenase.  相似文献   

17.
Extracellular nucleotides control mechanisms such as thrombosis or inflammation that are important in several pathologies, including heart valve disease and calcification. Ectonucleoside triphosphate diphosphohydrolase 1 (eNTPD1, CD39) and ecto-5′-nucleotidase (e5NT, CD73) are ectoenzymes that convert adenosine triphosphate to adenosine diphosphate, adenosine monophosphate and finally to adenosine. Changes in activities of these enzymes influence extracellular nucleotide concentrations and therefore could be involved in valve pathology. This study aimed to analyze type of cells, specific area, level of expression and biochemical function of CD39 and CD73 in pig aortic valves. Samples were collected from aortic valves of domestic pigs. Histological sections were cut from paraffin embedded tissue blocks. Following incubation with primary antibody against CD39 or CD73, washing and secondary goat anti-rabbit secondary antibodies, slides were viewed with NanoZoomer scanner. Substantial expression CD39 and CD73 was observed in two main types of valve cells: endothelial and valve interstitial cells. Subsequently, biochemical function of CD39 and CD73 was evaluated in cells cultured from pig aortic valve. Breakdown of extracellular nucleotides added to cell medium was analyzed with high performance liquid chromatography. In the interstitial cells, the CD73 products formation was much faster than in endothelium, while for the CD39 activity this relation was opposite. Expression and high concentration of CD39 and CD73 products in endothelium are expected, but presence of CD73 in valve interstitial cells is a surprise. We conclude that CD39 and CD73 and their enzymatic activities that convert extracellular nucleotides are highly expressed and could have special function in the valve.  相似文献   

18.

Background

Baboons receiving xenogeneic livers from wild type and transgenic pigs survive less than 10 days. One of the major issues is the early development of profound thrombocytopenia that results in fatal hemorrhage. Histological examination of xenotransplanted livers has shown baboon platelet activation, phagocytosis and sequestration within the sinusoids. In order to study the mechanisms of platelet consumption in liver xenotransplantation, we have developed an in vitro system to examine the interaction between pig endothelial cells with baboon platelets and to thereby identify molecular mechanisms and therapies.

Methods

Fresh pig hepatocytes, liver sinusoidal and aortic endothelial cells were isolated by collagenase digestion of livers and processing of aortae from GTKO and Gal+ MGH-miniature swine. These primary cell cultures were then tested for the differential ability to induce baboon or pig platelet aggregation. Phagocytosis was evaluated by direct observation of CFSE labeled-platelets, which are incubated with endothelial cells under confocal light microscopy. Aurintricarboxylic acid (GpIb antagonist blocking interactions with von Willebrand factor/vWF), eptifibatide (Gp IIb/IIIa antagonist), and anti-Mac-1 Ab (anti-αMβ2 integrin Ab) were tested for the ability to inhibit phagocytosis.

Results

None of the pig cells induced aggregation or phagocytosis of porcine platelets. However, pig hepatocytes, liver sinusoidal and aortic endothelial cells (GTKO and Gal+) all induced moderate aggregation of baboon platelets. Importantly, pig liver sinusoidal endothelial cells efficiently phagocytosed baboon platelets, while pig aortic endothelial cells and hepatocytes had minimal effects on platelet numbers. Anti-MAC-1 Ab, aurintricarboxylic acid or eptifibatide, significantly decreased baboon platelet phagocytosis by pig liver endothelial cells (P<0.01).

Conclusions

Although pig hepatocytes and aortic endothelial cells directly caused aggregation of baboon platelets, only pig liver endothelial cells efficiently phagocytosed baboon platelets. Blocking vWF and integrin adhesion pathways prevented both aggregation and phagocytosis.  相似文献   

19.
1. Adenosine, a potent vasodilator, is transported very efficiently by pig aortic endothelium in monolayer culture (approx. 50pmol/min per 10(6) cells at 2 micrometer). Uptake proceeds by diffusion at high (millimolar) substrate concentrations, and by two discrete transport processes (Km approx. 3 micrometer and 250 micrometer) at lower concentrations. Over 90% of the adenosine taken up at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides (mainly ATP). 2. The high-affinity process is selectively inhibited by dipyridamole and by nitrobenzylthioinosine. Adenine preferentially inhibits the lower-affinity process, papapaverine inhibits both transport processes, and inosine has no significant effect. 3. Pig aortic smooth-muscle cells in culture show no high-affinity transport system for adenosine; uptake is much slower at low concentrations than that by endothelium (approx. 5pmol/min per 10(6) cells at 2 micrometer). Over 80% of the incorporated adenosine at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides. 4. The uptake of adenosine by smooth-muscle cells is powerfully inhibited by adenine, but dipyridamole is much less potent than in endothelium. 5. We conclude that endothelial cells are mainly responsible for the removal of circulating adenosine.  相似文献   

20.
Retroviruses are transmitted in two distinct ways: as infectious particles and as 'endogenous' proviral DNA integrated in the germ line of the host. Modern infectious viruses such as HIV-1 and HIV-2 recently infected mankind from chimpanzee and simian hosts, whereas human endogenous retroviral genomes have been present throughout old world primate evolution. Human T-cell leukemia viruses (HTLV-1 and II) have a much older human provenance than HIV, although new zoonoses from simians may also occur. We have recently characterized new retroviruses in pigs and humans. Porcine endogenous retroviral (PERV) genomes are carried in chromosomal DNA but can be activated to produce virions that are infectious for human cells, which has raised concern over human xenotransplantation using pig tissues. Human retrovirus 5 (HRV-5) is detected as an exogenous genome in association with arthritis and systemic lupus erythematosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号