首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and enzymatic characteristics of a cutinase‐like enzyme (CLE) from Cryptococcus sp. strain S‐2, which exhibits remote homology to a lipolytic enzyme and a cutinase from the fungus Fusarium solani (FS cutinase), were compared to investigate the unique substrate specificity of CLE. The crystal structure of CLE was solved to a 1.05 Å resolution. Moreover, hydrolysis assays demonstrated the broad specificity of CLE for short and long‐chain substrates, as well as the preferred specificity of FS cutinase for short‐chain substrates. In addition, site‐directed mutagenesis was performed to increase the hydrolysis activity on long‐chain substrates, indicating that the hydrophobic aromatic residues are important for the specificity to the long‐chain substrate. These results indicate that hydrophobic residues, especially the aromatic ones exposed to solvent, are important for retaining lipase activity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Structural calcium sites control protein thermostability and activity by stabilizing native folds and changing local conformations. Alicyclobacillus acidocaldarius survives in thermal-acidic conditions and produces an endoglucanase Cel9A (AaCel9A) which contains a calcium-binding site (Ser465 to Val470) near the catalytic cleft. By superimposing the Ca2+-free and Ca2+-bounded conformations of the calcium site, we found that Ca2+ induces hydrophobic interactions between the calcium site and its nearby region by driving a conformational change. The hydrophobic interactions at the high-B-factor region could be enhanced further by replacing the surrounding polar residues with hydrophobic residues to affect enzyme thermostability and activity. Therefore, the calcium-binding residue Asp468 (whose side chain directly ligates Ca2+), Asp469, and Asp471 of AaCel9A were separately replaced by alanine and valine. Mutants D468A and D468V showed increased activity compared with those of the wild type with 0 mM or 10 mM Ca2+ added, whereas the Asp469 or Asp471 substitution resulted in decreased activity. The D468A crystal structure revealed that mutation D468A triggered a conformational change similar to that induced by Ca2+ in the wild type and developed a hydrophobic interaction network between the calcium site and the neighboring hydrophobic region (Ala113 to Ala117). Mutations D468V and D468A increased 4.5°C and 5.9°C, respectively, in melting temperature, and enzyme half-life at 75°C increased approximately 13 times. Structural comparisons between AaCel9A and other endoglucanases of the GH9 family suggested that the stability of the regions corresponding to the AaCel9A calcium site plays an important role in GH9 endoglucanase catalysis at high temperature.  相似文献   

3.
A new glucanolytic bacterial strain, SU40 was isolated, and identified as Bacillus subtilis on the basis of 16S rRNA sequence homology and phylogenetic tree analysis. The gene encoding β-1,3-1,4-glucanase was delineated, cloned into pET 28a+ vector and heterologously overexpressed in Escherichia coli BL21(DE3). The purified recombinant enzyme was about 24 kDa. The enzyme exhibited maximum activity (36.84 U/ml) at 60°C, pH 8.0 and maintained 54% activity at 80°C after incubation for 60 min. The enzyme showed activity against β-glucan, lichenan, and xylan. Amino acid sequence shared a conserved motif EIDIEF. The predicted three-dimensional homology model of the enzyme showed the presence of catalytic residues Glu105, Glu109 and Asp107, single disulphide bridge between Cys32 and Cys61 and three calcium binding site residues Pro9, Gly45 and Asp207. Presence of calcium ion improves the thermal stability of SU40 β-1,3-1,4-glucanase. Molecular dynamics simulation studies revealed that the absence of calcium ion fluctuate the active site residues which are responsible for thermostability. The high catalytic activity and its stability to temperature, pH and metal ions indicated that the enzyme β-1,3-1,4-glucanase by B. subtilis SU40 is a good candidate for biotechnological applications.  相似文献   

4.
J Bouvier  P Schneider  R Etges  C Bordier 《Biochemistry》1990,29(43):10113-10119
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.  相似文献   

5.
Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.  相似文献   

6.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

7.
A novel zinc-dependent metalloendopeptidase of Bacillus intermedius (MprBi) was purified from the culture medium of a recombinant strain of Bacillus subtilis. The amino acid sequence of the homogeneous protein was determined using MALDI-TOF mass spectrometry. The sequence of the first ten residues from the N-terminus of the mature protein is ASTGSQKVTV. Physicochemical properties of the enzyme and its substrate specificity have been studied. The molecular weight of the metalloproteinase constitutes 19 kDa, the K m and k cat values are 0.06 mM and 1210 sec−1, respectively, and the pI value is 5.4. The effect of different inhibitors and metal ions on the enzyme activity has been studied. Based on the analysis of the amino acid sequence of the active site motif and the Met-turn together with the enzyme characteristics, the novel bacterial metalloproteinase MprBi is identified as a metzincin clan adamalysin/reprolysin-like metalloprotease.  相似文献   

8.
A FAD-dependent glucose dehydrogenase (FADGDH) mutant with narrow substrate specificity was constructed by site-directed mutagenesis. Several characteristics of FADGDH, such as high catalytic activity and high electron transfer ability, make this enzyme suitable for application to glucose sensors. However, for further applications, improvement of the broad substrate specificity is needed. In this paper, we mutated two residues, Asn475 and Ala472, which are located near the putative active site of the catalytic subunit of FADGDH and have been predicted from the alignment with the active site of glucose oxidase. Of the 38 mutants constructed, Ala472Phe and Asn475Asp were purified and their activities were analyzed. Both mutants showed a higher specificity toward glucose compared to the wild type enzyme.  相似文献   

9.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

10.
Residue-specific chemical modification of amino acid residues of the microsomal epoxide hydrolase (mEH) from Rhodosporidium toruloides UOFS Y-0471 revealed that the enzyme is inactivated through modification of Asp/Glu and His residues, as well as through modification of Ser. Since Asp acts as the nucleophile, and Asp/Glu and His serve as charge relay partners in the catalytic triad of microsomal and soluble epoxide hydrolases during epoxide hydrolysis, inactivation of the enzyme by modification of the Asp/Glu and His residues agrees with the established reaction mechanism of these enzymes. However, the inactivation of the enzyme through modification of Ser residues is unexpected, suggesting that a Ser in the catalytic site is indispensable for substrate binding by analogy of the role of Ser residues in the related L-2-haloacid dehalogenases, as well as the ATPase and phosphatase enzymes. Co2+, Hg2+, Ag+, Mg2+ and Ca2+ inhibited enzyme activity and EDTA increased enzyme activity. The activation energy for inactivation of the enzyme was 167 kJ mol–1. Kinetic constants for the enzyme could not be determined since unusual behaviour was displayed during hydrolysis of 1,2-epoxyoctane by the purified enzyme. Enantioselectivity w as strongly dependent on substrate concentration. When the substrate was added in concentrations ensuring two-phase conditions, the enantioselectivity was greatly enhanced. On the basis of these results, it is proposed that this enzyme acts at an interface, analogous to lipases.  相似文献   

11.
PHOSPHO1 is a recently identified phosphatase whose expression is upregulated in mineralizing cells and is implicated in the generation of inorganic phosphate for matrix mineralization, a process central to skeletal development. The enzyme is a member of the haloacid dehalogenase (HAD) superfamily of magnesium-dependent hydrolases. However, the natural substrate(s) is as yet unidentified and to date no structural information is known. We have identified homologous proteins in a number of species and have modelled human PHOSPHO1 based upon the crystal structure of phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The model includes the catalytic Mg(2+) atom bound via three conserved Asp residues (Asp32, Asp34 and Asp203); O-ligands are also provided by a phosphate anion and two water molecules. Additional residues involved in PSP-catalysed hydrolysis are conserved and are located nearby, suggesting both enzymes share a similar reaction mechanism. In PHOSPHO1, none of the PSP residues that confer the enzyme's substrate specificity (Arg56, Glu20, Met43 and Phe49) are conserved. Instead, we propose that two fully conserved Asp residues (Asp43 and Asp123), not present in PSPs contribute to substrate specificity in PHOSPHO1. Our findings show that PHOSPHO1 is not a member of the subfamily of PSPs but belongs to a novel, closely related enzyme group within the HAD superfamily.  相似文献   

12.
Allosteric behavior and substrate inhibition are unique characteristics of Lactococcus lactis prolidase. We hypothesized that charged residues (Asp36, His38, Glu39, and Arg40), present on one loop essential for catalysis, interact with residues in or near the active site to impart these unique characteristics. Asp36 has a predominant role in the allosteric behavior, as demonstrated through the non-allosteric behavior of the D36S mutant enzyme. In contrast, a double mutant (D36E/R293K) maintained the allostery, indicating that this aspartic acid residue interacts with Arg293, previously shown to be critical in the allostery. Substitution of His38 drastically reduced the substrate inhibition, and substrate specificity of the mutant at Asp36 or His38 showed the influence of these residues to the substrate specificity. These findings confirm the importance of the loop in the enzymatic reaction mechanism and suggest the existence of conformational changes of the loop structure between open and closed states. A variety of mutations at Glu39 and Arg40 showed that these residues influence roles of the loop in the enzyme reaction. On the basis of these results and combined with observations of molecular models of this prolidase, we concluded that Asp36 and His38 interact with the residues in the active site to generate an allosteric subsite and a pseudo-S(1)' site, which are responsible for the allosteric behavior and substrate inhibition.  相似文献   

13.
A metagenome‐derived glycoside hydrolase family 9 enzyme with an N‐terminal immunoglobulin‐like (Ig‐like) domain, leaf‐branch compost (LC)‐CelG, was characterized and its crystal structure was determined. LC‐CelG did not hydrolyze p‐nitrophenyl cellobioside but hydrolyzed CM‐cellulose, indicating that it is endoglucanase. LC‐CelG exhibited the highest activity at 70°C and >80% of the maximal activity at a broad pH range of 5–9. Its denaturation temperature was 81.4°C, indicating that LC‐CelG is a thermostable enzyme. The structure of LC‐CelG resembles those of CelD from Clostridium thermocellum (CtCelD), Cel9A from Alicyclobacillus acidocaldarius (AaCel9A), and cellobiohydrolase CbhA from C. thermocellum (CtCbhA), which show relatively low (29–31%) amino acid sequence identities to LC‐CelG. Three acidic active site residues are conserved as Asp194, Asp197, and Glu558 in LC‐CelG. Ten of the thirteen residues that form the substrate binding pocket of AaCel9A are conserved in LC‐CelG. Removal of the Ig‐like domain reduced the activity and stability of LC‐CelG by 100‐fold and 6.3°C, respectively. Removal of the Gln40‐ and Asp99‐mediated interactions between the Ig‐like and catalytic domains destabilized LC‐CelG by 5.0°C without significantly affecting its activity. These results suggest that the Ig‐like domain contributes to the stabilization of LC‐CelG mainly due to the Gln40‐ and Asp99‐mediated interactions. Because the LC‐CelG derivative lacking the Ig‐like domain accumulated in Escherichia coli cells mostly in an insoluble form and this derivative accumulated in a soluble form exhibited very weak activity, the Ig‐like domain may be required to make the conformation of the active site functional and prevent aggregation of the catalytic domain.  相似文献   

14.
Betaine‐homocysteine S‐methyltransferase (BHMT) is a zinc‐dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S‐adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent KM for K+ of about 100 µM. The presence of potassium ions lowers the apparent KM of the enzyme for homocysteine, but it does not affect the apparent KM for betaine or the apparent kcat for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26‐Gly27‐Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site‐specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme. Proteins 2014; 82:2552–2564. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.  相似文献   

16.
Intracellular serine protease, termed ISP-103, was isolated from Bacillus subtilis, strain 103. The substrate specificity of the enzyme was compared to that of secretory subtilisins. Similar to subtilisins, ISP-103 cleaves a single peptide bond Ala20-Ser21 within the native pancreatic ribonuclease A, which results in the accumulation of trypsin-sensitive ribonuclease S, consisting of a non-covalently bound S-peptide (20 amino acid residues) and S-protein (104 amino acid residues). The enzyme hydrolyzes a single peptide bond Leu15-Tyr16 of the B-chain of oxidized bovine insulin, in contrast to the subtilisins cleaving four additional bonds. ISP prefers Leu rather than Phe in the P1 binding site of the rho-nitroanilide peptide substrates and shows a more strict dependence of the activity on the presence of the hydrophobic residues in the P2 and P3 sites. The data obtained indicate that the substrate specificity of ISP, being within the borders of subtilisin specificity, is nevertheless much more restricted.  相似文献   

17.
A haloalkane dehalogenase (DppA) from Plesiocystis pacifica SIR-1 was identified by sequence comparison in the NCBI database, cloned, functionally expressed in Escherichia coli, purified, and biochemically characterized. The three-dimensional (3D) structure was determined by X-ray crystallography and has been refined at 1.95 Å resolution to an R-factor of 21.93%. The enzyme is composed of an α/β-hydrolase fold and a cap domain and the overall fold is similar to other known haloalkane dehalogenases. Active site residues were identified as Asp123, His278, and Asp249 and Trp124 and Trp163 as halide-stabilizing residues. DppA, like DhlA from Xanthobacter autotrophicus GJ10, is a member of the haloalkane dehalogenase subfamily HLD-I. As a consequence, these enzymes have in common the relative position of their catalytic residues within the structure and also show some similarities in the substrate specificity. The enzyme shows high preference for 1-bromobutane and does not accept chlorinated alkanes, halo acids, or halo alcohols. It is a monomeric protein with a molecular mass of 32.6 kDa and exhibits maximum activity between 33 and 37°C with a pH optimum between pH 8 and 9. The Km and kcat values for 1-bromobutane were 24.0 mM and 8.08 s?1. Furthermore, from the 3D-structure of DppA, it was found that the enzyme possesses a large and open active site pocket. Docking experiments were performed to explain the experimentally determined substrate preferences.  相似文献   

18.
In this study, the extracellular enzyme activity ofBacillus sp. A8-8 was detected on LB agar plates containing 0.5% of the following substrates: carboxymethylcellulose (CMC), xylan, cellulose, and casein, respectively. The β-1,3-1,4 glucanase produced fromBacillus sp. A8-8 was purified by ammonium sulfate and hydrophobic chromatography. The molecular size of the protein was estimated by SDS-PAGE as approximately 33 kDa. The optimum pH and temperature for the enzyme activity were 6.0 and 60°C, respectiveley. However, enzyme activity was shown over a broad range of pH values and temperatures. The purified β-1,3-1,4 glucanase retained over 70% of its original activity after incubation at 80°C for 2 h, and showed over 40% of its original activity within the pH range of 9 to 12. This suggests that β-1,3-1,4 glucanase fromBacillus sp. A8-8 is thermostable and alkalistable. In addition, β-1,3-1,4 glucanase had higher substrate specificity to lichenan than to CMC. Finally the activity of the endoglucanase was inhibited by Fe3+, Mg2+, and Mn2+ ions. However Co2+ and Ca2+ ions were increased its activity. These authors contributed equally to this work.  相似文献   

19.
The inositol monophosphatase (IMPase) enzyme from the hyperthermophilic archaeon Methanocaldococcus jannaschii requires Mg2+ for activity and binds three to four ions tightly in the absence of ligands: KD = 0.8 μM for one ion with a KD of 38 μM for the other Mg2+ ions. However, the enzyme requires 5–10 mM Mg2+ for optimum catalysis, suggesting substrate alters the metal ion affinity. In crystal structures of this archaeal IMPase with products, one of the three metal ions is coordinated by only one protein contact, Asp38. The importance of this and three other acidic residues in a mobile loop that approaches the active site was probed with mutational studies. Only D38A exhibited an increased kinetic KD for Mg2+; D26A, E39A, and E41A showed no significant change in the Mg2+ requirement for optimal activity. D38A also showed an increased Km, but little effect on kcat. This behavior is consistent with this side chain coordinating the third metal ion in the substrate complex, but with sufficient flexibility in the loop such that other acidic residues could position the Mg2+ in the active site in the absence of Asp38. While lithium ion inhibition of the archaeal IMPase is very poor (IC50~250 mM), the D38A enzyme has a dramatically enhanced sensitivity to Li+ with an IC50 of 12 mM. These results constitute additional evidence for three metal ion assisted catalysis with substrate and product binding reducing affinity of the third necessary metal ion. They also suggest a specific mode of action for lithium inhibition in the IMPase superfamily.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号