共查询到20条相似文献,搜索用时 0 毫秒
1.
Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins 总被引:10,自引:0,他引:10
S Clarke 《International journal of peptide and protein research》1987,30(6):808-821
One mechanism for the spontaneous degradation of polypeptides is the intramolecular attack of the peptide bond nitrogen on the side chain carbonyl carbon atom of aspartic acid and asparagine residues. This reaction results in the formation of succinimide derivatives and has been shown to be largely responsible for the racemization, isomerization, and deamidation of these residues in several peptides under physiological conditions (Geiger, T. & Clarke, S. J. Biol. Chem. 262, 785-794 (1987]. To determine if similar reactions might occur in proteins, I examined the sequence and conformation about aspartic acid and asparagine residues in a sample of stable, well-characterized proteins. There did not appear to be any large bias against dipeptide sequences that readily form succinimides in small peptides. However, it was found that aspartyl and asparaginyl residues generally exist in native proteins in conformations where the peptide bond nitrogen atom cannot approach the side chain carbonyl carbon to form a succinimide ring. These orientations also represent energy minimum states, and it appears that this factor may account for a low rate of spontaneous damage to proteins by succinimide-linked reactions. The presence of aspartic acid and asparagine residues in other conformations, such as those in partially denatured, conformationally flexible regions, may lead to more rapid succinimide formation and contribute to the degradation of the molecule. The possible role of isoimide intermediates, formed by the attack of the peptide oxygen atom on the side chain carboxyl group, in protein racemization, isomerization, and deamidation is also considered. 相似文献
2.
Bert H.-O. Güttler Holger Cynis Franziska Seifert Hans-Henning Ludwig Andrea Porzel Stephan Schilling 《Amino acids》2013,44(4):1205-1214
The formation of isoaspartate (isoAsp) from asparaginyl or aspartyl residues is a spontaneous post-translational modification of peptides and proteins. Due to isopeptide bond formation, the structure and possibly function of peptides and proteins is altered. IsoAsp modifications within the peptide chain have been reported for many cytosolic proteins. Amyloid peptides (Aβ) deposited in Alzheimer’s disease may carry an N-terminal isoAsp-modification. Here, we describe a quantitative investigation of isoAsp-formation from N-terminal Asn and Asp using model peptides similar to the Aβ N-terminus. The study is based on a newly developed separation of peptides using capillary electrophoresis (CE). 1H NMR was employed to validate the basic finding of N-terminal isoAsp-formation from Asp and Asn. Thereby, the isomerization of Asn at neutral pH (0.6 day?1, peptide NGEF) is approximately six times faster than that within the peptide chain (AANGEF). The difference in velocity between Asn and Asp isomerization is approximately 50-fold. In contrast to N-terminal Asn, Asp isomerization is significantly accelerated at acidic pH. The kinetic solvent isotope (k D2O/k H2O) effect of 2.46 suggests a rate-limiting proton transfer in isoAsp-formation. The proton inventory is consistent with transfer of one proton in the transition state, supporting the previous notion of rate-limiting deprotonation of the peptide backbone amide during succinimide-intermediate formation. The study provides evidence for a spontaneous N-terminal isoAsp-formation within peptides and might explain the accumulation of N-terminal isoAsp in amyloid deposits. 相似文献
3.
Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric. 总被引:3,自引:1,他引:3
下载免费PDF全文

We have investigated the spontaneous degradation of aspartate and asparagine residues via succinimide intermediates in model peptides in organic co-solvents. We find that the rate of deamidation at asparagine residues is markedly reduced in solvents of low dielectric strength. Theoretical considerations suggest that this decrease in rate is due to the destabilization of the deprotonated peptide bond nitrogen anion that is the postulated attacking species in succinimide formation. This result suggests that asparagine residues in regions with low dielectric constants, such as the interior of a protein or in a membrane bilayer, are protected from this type of degradation reaction. On the other hand, we found little or no effect on the rate of succinimide-mediated isomerization of aspartate residues when subjected to the same changes in dielectric constant. In this case, the destabilization of the attacking peptide bond nitrogen anion may be balanced by increased protonation of the aspartyl side chain carboxyl group, a reaction that results in a superior leaving group. Consequently, any protein structure or conformation that would increase the protonation of an aspartate side chain carboxyl group can be expected to render that residue more labile. These results may help explain why particular aspartate residues have been found to degrade in proteins at rates comparable to those of asparagine residues, even though aspartyl-containing peptides degrade more slowly than corresponding asparaginyl-containing peptides in aqueous solutions. 相似文献
4.
Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins 总被引:11,自引:0,他引:11
Nonenzymatic intramolecular reactions can result in the deamidation, isomerization, and racemization of protein and peptide asparaginyl and aspartyl residues via succinimide intermediates. To understand the sequence dependence of these reactions, we measured the rate of succinimide formation in a series of synthetic peptides at pH 7.4. These peptides (Val-Tyr-Pro-X-Y-Ala) contained an internal aspartyl, asparaginyl, aspartyl beta-methyl ester, or aspartyl alpha-methyl ester residue (X) followed by a glycyl, seryl, or alanyl residue (Y). The rates of succinimide formation of the asparaginyl peptides were found to be 13.1-35.6 times faster than those of the aspartyl peptides. The rates of succinimide formation for the glycyl peptides were 6.5-17.6 times faster than those of the alanyl peptides, while the rates for the seryl peptides were 1.6-4.5 times faster than those of the alanyl peptides. The overall 232-fold range in these reaction rates for aspartyl and asparaginyl residues suggests that sequence can be an important determinant in their stability in flexible peptides. In proteins, there may be a much larger range in the rates of succinimide formation because specific conformations may greatly enhance or inhibit this reaction. 相似文献
5.
6.
We have investigated the formation of D-aspartyl and L-isoaspartyl (beta-aspartyl) residues and their subsequent methylation in bovine brain calmodulin by the type II protein carboxyl methyltransferase. Based on the results of studies with unstructured peptides and denatured proteins, it has been proposed that the major sites of carboxyl methylation in calmodulin are at L-isoaspartyl residues that originate from two Asn-Gly sequences. To test this hypothesis, we directly identified the sites of methylation in affinity-purified preparations of calmodulin by peptide mapping using the proteases trypsin, endoproteinase Lys-C, clostripain, chymotrypsin, and Staphylococcus aureus V8 protease. We found, however, that the major high-affinity sites of methylation originate from aspartyl residues at position 2 and at positions 78 and/or 80. The methylatable residue in the first case was shown to be L-isoaspartate by comparison of the properties of a synthetic peptide corresponding to the N-terminal 13 residues substituted with an L-iso-Asp residue at position 2. The second methylatable residue, probably derived from Asp78, also appears to be an L-isoaspartyl residue. These sites appear to be readily accessible to the methyltransferase and are present in relatively flexible regions of calmodulin that may allow the spontaneous degradation reactions to occur that generate L-isoaspartyl residues via succinimide intermediates. Interestingly, the four calcium binding regions, each containing 3-4 aspartyl and asparaginyl residues (including the two Asn-Gly sequences), do not appear to contribute to the high-affinity methyl acceptor sites, even when calcium is removed prior to the methylation reaction. We propose that methylatable residues do not form at these sites because of the inflexibility of these regions when calcium is bound. 相似文献
7.
Nakamura T Sakai M Sadakane Y Haga T Goto Y Kinouchi T Saito T Fujii N 《Biochimica et biophysica acta》2008,1784(9):1192-1199
Asp58 and Asp151 in alpha A-crystallin of human eye lenses become highly inverted and isomerized to d-beta-Asp residues with age. Racemization was previously shown to proceed rapidly when the residue on the carboxyl side of the Asp residue is small. Asn was also demonstrated to be more susceptible to racemization than Asp in protein. In this study, the changes of rate constants for racemization at Asp58 and Asp151 and at Asn58 and Asn151 were investigated using D58N, S59T, D151N and A152V mutants obtained through site-directed mutagenesis. The rate constant of racemization at Asn151 in D151N was found to be 1.5 times more rapid than Asp151 in the wild-type. For A152V, the rate constant at Asp151 was 1/4 that of the wild-type. There were no significant differences in the rate constants of racemization for both Asp58 and Asn58 residues. The aggregate size of D58N, S59T and D151N mutants increased or increased in polydispersity and their chaperone activities decreased. The size and chaperone activity of A152V was unchanged. These results suggest that structures close to Asp58 and Asp151 residues in the protein affect the rate constant of Asp racemization and the size and chaperone function of alpha A-crystallin. 相似文献
8.
Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase 总被引:1,自引:0,他引:1
Protein carboxyl methyltransferases from erythrocytes and brain appear to catalyze the esterification of L-isoaspartyl and/or D-aspartyl residues but not of normal L-aspartyl residues. In order to identify the origin of these unusual residues which occur in subpopulations of a variety of cellular proteins, we studied the in vitro methylation by the erythrocyte enzyme of glucagon, a peptide hormone of 29 amino acids containing 3 aspartyl residues and a single asparagine residue. Methylated glucagon was digested with either trypsin, chymotrypsin, pepsin, or endoproteinase Arg C, and the labeled fragments were separated by high-performance liquid chromatography and identified. In separate experiments, methyl acceptor sites were determined by digesting glucagon first with proteases and then assaying purified glucagon fragments for methyl acceptor activity. Using both approaches, we found that the major site of methylation, accounting for about 62% of the total, was at the position of Asp-9. Chemical analysis of fragments containing this residue indicated that this site represents an L-isoaspartyl residue. A second site of methylation, representing about 23% of the total, was detected at the position of Asn-28 and was also shown to represent an L-isoaspartyl residue. Methyl acceptor sites were not detected at the positions of Asp-15 or Asp-21. Preincubation of glucagon under basic conditions (0.1 M NH4OH, 3 h, 37 degrees C) increased methylation at the Asn-28 site by 4-8-fold while methylation at the Asp-9 site remained unchanged. These results suggest that methylation sites can originate from both aspartyl and asparaginyl residues and that these sites may be distinguished by the effect of base treatment. 相似文献
9.
D D Monkovic W J VanDusen C J Petroski V M Garsky M K Sardana P Zavodszky A M Stern P A Friedman 《Biochemical and biophysical research communications》1992,189(1):233-241
An invertebrate alpha-ketoglutarate-dependent aspartyl/asparaginyl beta-hydroxylase, which posttranslationally hydroxylates specific aspartyl or asparaginyl residues within epidermal growth factor-like modules, was identified, partially purified and characterized. Preparations derived from two insect cell lines catalyzed the hydroxylation of the expected asparaginyl residue within a synthetic epidermal growth factor-like module. This activity was found to be similar to that of the purified mammalian aspartyl/asparaginyl beta-hydroxylase with respect to cofactor requirements, stereochemistry and substrate sequence specificity. Furthermore, recombinant human C1r, expressed in an insect cell-derived baculovirus expression system, was also found to be hydroxylated at the expected asparaginyl residue. Thus, these results establish the potential for invertebrate aspartyl/asparaginyl hydroxylation. Since several invertebrate proteins known to be required for proper embryonic development contain a putative consensus sequence that may be required for hydroxylation, the studies presented here provide the basis for further investigations concerned with identifying hydroxylated invertebrate proteins and determining their physiologic function. 相似文献
10.
S Jia W J VanDusen R E Diehl N E Kohl R A Dixon K O Elliston A M Stern P A Friedman 《The Journal of biological chemistry》1992,267(20):14322-14327
Aspartyl (asparaginyl) beta-hydroxylase which specifically hydroxylates 1 Asp or Asn residue in certain epidermal growth factor-like domains of a number of proteins, has been previously purified to apparent homogeneity from detergent-solubilized bovine liver microsomes (Wang, Q., VanDusen, W. J., Petroski, C. J., Garsky, V. M., Stern, A. M., and Friedman, P. A. (1991) J. Biol. Chem. 266, 14004-14010). Three oligonucleotides, corresponding to three amino acid sequences of the purified hydroxylase, were used to screen bovine cDNA libraries. Several overlapping positive cDNA clones containing a full length open reading frame of 754 amino acids encoding a 85-kDa protein were isolated, and a cDNA, containing the full length open reading frame, was constructed from two of these clones. The resulting clone was then transcribed and translated in vitro to produce recombinant protein which possessed Asp beta-hydroxylase activity. These results constitute proof that the protein purified from bovine liver is an Asp beta-hydroxylase. Comparisons of deduced amino acid sequences of two other alpha-ketoglutarate-dependent dioxygenases, prolyl-4-hydroxylase and lysyl hydroxylase, with that of Asp beta-hydroxylase showed no significant homologies. Indeed, Asp beta-hydroxylase appears to be unique as no striking homology was found with known protein sequences. Furthermore, structural predictions derived from the deduced amino acid sequence are in accord with earlier Stokes' radius and sedimentation coefficient determinations of the enzyme, suggesting that the enzyme contains a relatively compact carboxyl-terminal catalytic domain and an extended amino terminus. This amino-terminal region has a potential transmembrane type II signal-anchor domain that could direct the catalytic domain into the lumen of the endoplasmic reticulum. 相似文献
11.
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2. 相似文献
12.
Some asparagine and glutamine residues in proteins undergo deamidation to aspartate and glutamate with rates that depend upon the sequence and higher-order structure of the protein. Functional groups within the protein can catalyze this reaction, acting as general acids, bases, or stabilizers of the transition state. Information from specific proteins that deamidate and analysis of protein sequence and structure data bases suggest that asparagine and glutamine lability has been a selective pressure in the evolution of protein sequence and folding. Asparagine and glutamine deamidation can affect protein structure and function in natural and engineered mutant sequences, and may play a role in the regulation of protein folding, protein breakdown, and aging. 相似文献
13.
G Matthews 《Neuron》2001,32(6):962-963
Synaptic depression contributes to short-term changes in synaptic efficacy during sustained activity. Sakaba and Neher (2001) have characterized two kinetically distinct pools of releasable vesicles whose depletion underlies depression at a CNS synapse. Calcium/calmodulin dramatically accelerates replenishment of one of these pools--and hence recovery from depression. 相似文献
14.
15.
We have previously characterized the calcium-dependent calmodulin (CaM)-binding domain (Ser76-Ser92) of the 135-kDa human protein 4.1 isoform using fluorescence spectroscopy and chemically synthesized nonphosphorylated or serine phosphorylated peptides [Leclerc, E. & Vetter, S. (1998) Eur. J. Biochem. 258, 567-671]. Here we demonstrate that phosphorylation of two serine residues within the 17-residue peptide alters their ability to adopt alpha helical conformation in a position-dependent manner. The helical content of the peptides was determined by CD-spectroscopy and found to increase from 36 to 45% for the Ser80 phosphorylated peptide and reduce to 28% for the Ser84 phosphorylated peptide; the di-phosphorylated peptide showed 32% helical content. Based on secondary structure prediction methods we propose that initial helix formation involves the central residues Leu82-Phe86. The ability of the peptides to adopt alpha helical conformations did not correlate with the observed binding affinities to CaM. We suggest that the reduced CaM-binding affinities observed for the phosphorylated peptides are more likely to be the result of unfavorable sterical and electrostatic interactions introduced into the CaM peptide-binding interface by the phosphate groups, rather than being due to the effect of phosphorylation on the secondary structure of the peptides. 相似文献
16.
Yang T Chaudhuri S Yang L Chen Y Poovaiah BW 《The Journal of biological chemistry》2004,279(41):42552-42559
Calcium/calmodulin-dependent kinases play an important role in protein phosphorylation in eukaryotes. However, not much is known about calcium/calmodulin-dependent protein phosphorylation and its role in signal transduction in plants. By using a protein-protein interaction-based approach, we have isolated a novel plant-specific calmodulin-binding receptor-like cytoplasmic kinase (CRCK1) from Arabidopsis thaliana, as well as its ortholog from Medicago sativa (alfalfa). CRCK1 does not show high homology to calcium/calmodulin-dependent protein kinases in animals. In contrast, it shows high homology in the kinase domain to serine/threonine receptor-like kinases in plants. However, it contains neither a transmembrane domain nor an extracellular domain. Calmodulin binds to CRCK1 in a calcium-dependent manner with an affinity of approximately 20.5 nm. The calmodulin-binding site in CRCK1 is located in amino acids 160-183, which overlap subdomain II of the kinase domain. CRCK1 undergoes autophosphorylation in the presence of Mg2+ at the threonine residue(s). The Km and Vmax values of CRCK1 for ATP are 1 microm and 33.6 pmol/mg/min, respectively. Calcium/calmodulin stimulates the kinase activity of CRCK1, which increases the Vmax of CRCK1 approximately 9-fold. The expression of CRCK1 is increased in response to stresses such as cold and salt and stress molecules such as abscisic acid and hydrogen peroxide. These results indicate the presence of a calcium/calmodulin-regulated receptor-like cytoplasmic kinase in plants. Furthermore, these results also suggest that calcium/calmodulin-regulated protein phosphorylation involving CRCK1 plays a role in stress signal transduction in plants. 相似文献
17.
T Liu B Stetson S J Turco S C Hubbard P W Robbins 《The Journal of biological chemistry》1979,254(11):4554-4559
The lipid-linked oligosaccharide synthesized in vitro, in the presence of 1.0 microM UDP-[3H]Glc, GDP-[14C]Man, and UDP-GlcNAc has been isolated and the structure of the oligosaccharide has been analyzed. The oligosaccharide contains 2 N-acetylglucosamine, 9 mannose, and 3 glucose residues. The N-acetylglucosamine residues are located at the reducing terminus. The 3 glucose residues are arranged in a linear order at one of the nonreducing termini in the sequence Glc 1,2--Glc 1,3--Glc--(Man)9 (GlcNAc)2. The structural analysis was made possible largely by the availability of glucosidase preparations of fungal anad microsomal origin which remove glucose residues from the oligosaccharide without releasing mannose residues. 相似文献
18.
Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues 总被引:5,自引:0,他引:5
The tetrapeptides Val-Asn-Gly-Ala and N-acetyl-Val-Asn-Gly-Ala undergo deamidation of the asparaginyl residue at pH 7.0 at similar rates. However, they form different products. The N-acetyl peptide gave a 3:1 ratio of N-acetyl-Val-isoAsp-Gly-Ala and N-acetyl-Val-Asp-Gly-Ala, respectively. The nonacetylated peptide gave no detectable amounts of these products but rather gave a cyclic peptide formed from the nucleophilic displacement of the asparaginyl side chain amide by the amino terminus of valine. This compound was slowly inverted at carbon 2 of the asparaginyl residue. At pH values above 7.5, the nonacetylated peptide also underwent deamidation to form Val-isoAsp-Gly-Ala and Val-Asp-Gly-Ala in the 3:1 ratio. Proton NMR spectra of the acetylated and nonacetylated tetrapeptides show that below pH 7.5 they have very different preferred conformations, and it is these different conformations which result in the different mechanisms of deamidation. Above pH 9.0, both peptides have similar conformations and deamidate by the same mechanism to give equivalent products. Neither mechanism of deamidation was subject to general base catalysis by the buffer. These results suggest that deamidation rates of the asparaginyl-glycyl sequence in proteins will vary according to the conformation of the peptide backbone of each respective protein. The results also show that asparaginyl residues which are penultimate to the amino terminus can react to form an N-terminal-blocked seven-membered ring. 相似文献
19.
Shen C Ye Y Robertson SE Lau AW Mak DO Chou MM 《The Journal of biological chemistry》2005,280(43):35967-35973
The TRE17 (USP6/TRE-2) oncogene induces tumorigenesis in both humans and mice. However, little is known regarding its regulation or mechanism of transformation. TRE17 encodes a TBC (Tre-2/Bub2/Cdc16)/Rab GTPase-activating protein homology domain at its N terminus and a ubiquitin-specific protease at its C terminus. In the current study, we identified the ubiquitous calcium (Ca2+)-binding protein calmodulin (CaM) as a novel binding partner for TRE17. CaM bound directly to TRE17 in a Ca2+-dependent manner both in vitro and in vivo. The CaM-binding site was mapped to two hydrophobic motifs near the C terminus of the TBC domain. Point mutations within these motifs significantly reduced the interaction of TRE17 with CaM. We further found that TRE17 is monoubiquitinated and promotes its own deubiquitination in vivo. CaM binding-deficient mutants of TRE17 exhibited significantly reduced monoubiquitination, suggesting that binding of Ca2+/CaM to TRE17 promotes this modification. Consistent with this notion, treatment of cells with the CaM inhibitor W7 reduced levels of TRE17 monoubiquitination. Interestingly, the calcium ionophore A23187 induced accumulation of a polyubiquitinated TRE17 species. The effect of A23187 was attenuated in CaM binding-deficient mutants of TRE17. Taken together, these studies indicate a role for Ca2+/CaM in regulating ubiquitination through direct interaction with TRE17. 相似文献
20.
Regulated exocytosis was the first intracellular membrane fusion step that was suggested to involve both Ca(2+) and calmodulin. In recent years, it has become clear that calmodulin is not an essential Ca(2+) sensor for exocytosis but that it is likely to have a more regulatory role. A requirement for cytosolic Ca(2+) in other vesicle fusion events within cells has become apparent and in certain cases, such as homotypic fusion of early endosomes and yeast vacuoles, calmodulin may be the primary Ca(2+) sensor. A number of distinct targets for calmodulin have been identified including SNARE proteins and subunits of the vacuolar ATPase. The extent to which calmodulin regulates different intracellular fusion events through conserved SNARE-dependent or other mechanisms remains to be resolved. 相似文献