首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean soluble polysaccharides (SSPS) extracted from soybean cotyledons are acidic polysaccharides and have a pectin-like structure. The results of a structural analysis of SSPS by using polygalacturonase (PGase) and rhamnogalacturonase (RGase) clarified that the main backbone consisted of galacturonan (GN) and rhamnogalacturonan (RG), which were composed of the diglycosyl repeating unit, -4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-. The side chains of beta-1,4-galactans, branched with fucose and arabinose residues, were linked to the C-4 side of rhamnose residues in the RG regions. The degree of polymerization (dps) of GN, which linked the RG regions together, was estimated to be about 4-10 residues, and some were modified with xylose residues on the C-3 side of the galacturonates. The dps of GN at the reducing end of SSPS was estimated to be about 7-9 residues. Moreover, the fragment of the basic structure of the RG region, -[4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-]2-, some of which had long-chain beta-1,4-galactans branched on the C-4 side of rhamnose residues, were liberated from SSPS by the RGase treatment. The dps of the galactan side chain was estimated to be about 43-47 residues by an analysis of the digestion products from the beta-galactosidase treatment.  相似文献   

2.
Water-soluble polysaccharides from Ginkgo biloba leaves.   总被引:5,自引:0,他引:5  
J Kraus 《Phytochemistry》1991,30(9):3017-3020
The water-soluble polysaccharides from dried Ginkgo biloba leaves were isolated after exhaustive extraction with organic solvents. The polysaccharide mixture could be separated into a neutral (GF1) and two acidic (GF2 and GF3) polysaccharide fractions by ion exchange chromatography. According to the Mr distribution GF1 and GF3 seemed to be homogenous, whereas GF2 could be further fractionated into two subfractions (GF2a and GF2b) by gel permeation chromatography. GF1 (Mr 23,000) showed the structural features of a branched arabinan. The main chain was composed of 1,5-linked arabinose residues and three in 12 arabinose molecules were branched via C-2 or C-3. GF2a (Mr 500,000) consisted mainly of 1,2,4-branched mannose (29%), 1,4-linked glucuronic (32%) and galacturonic (8%) acid as well as terminal rhamnose (25%). After removal of ca 70% of the terminal rhamnose the remaining polysaccharide showed a decrease in 1,2,4-branched mannose and an increase in 1,2-linked mannose indicating that at least half of the rhamnose residues were linked to mannose via C-4. GF3 (Mr 40,000) consisted of 1,4-linked galacturonic (30%) and glucuronic (16) acid, 1,3,6-branched galactose (15%), 1,2-linked (5%) and 1,2,4-branched (3.5%) rhamnose as well as 1,5-linked arabinose (11%). Rhamnose (5%) and arabinose (10%) were present as terminal groups. Mild acid hydrolysis selectively cleaved arabinose and the remaining polysaccharide showed an increased amount of 1,6-linked and terminal galactose and a decreased quantity of 1,3,6-branched galactose. These results indicated that the terminal as well as the 1,5-linked arabinose were mainly connected to galactose via C-3. The GF3 polysaccharide appeared to be a rhamnogalacturonan with arabinogalactan side chains.  相似文献   

3.
Structure and immunological characteristics of the pectic arabinogalactan Vk2a (previously reported as Vk100A2a) from the roots of Vernonia kotschyana Sch. Bip. ex Walp. were investigated after enzymatic digestion of the galacturonan moiety and the side chains of the rhamnogalacturonan structure of Vk2a. endo-alpha-D-(1-->4)-Polygalacturonase digestion released the high molecular weight 'hairy region' (Vk2a-HR) and oligogalacturonides. Vk2a-HR consisted of GalA (4-linked) and Rha (2- or 2,4-linked) in a 1:1 ratio, with 60% of Rha branched at C-4. The Rha located in the rhamnogalacturonan core was branched randomly by Gal units. Vk2a-HR was rich in neutral sugars such as Araf 5- (12.2%) and 3,5-substituted (12.8%) and terminally- (14.1%) linked and Gal 4- (13.0%), 3- (0.9%), 6- (2.2%) and 3,6- (1.1%) substituted. Arabinans with chain lengths up to 11 units were identified. Araf residues were attached to C-3 of alpha-L-(1-->5)-Araf chains and to C-4 of Gal residues. Single Gal units and chains of beta-D-(1-->6)-linked galacto di- to penta-saccharides were attached to a beta-D-(1-->3)-galactan core. All the enzyme resistant fractions expressed potent complement fixation and induction of B-cell mitogenic activity, and the present study indicates that there may be several and possibly structurally different active sites involved in the bioactivity of Vk2a. The bioactive sites may be located both in the more peripheral parts of the molecule but also in the inner core of the 'hairy region' or in larger enzyme-resistant chains.  相似文献   

4.
The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked α-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated α-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked β-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked β-d-glucopyranosyluronic acid and 2-linked α-d-mannopyranose residues with α-l-fucopyranose residues as single branches at C-3 of α-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked β-d-glucopyranosyluronic acid residues with α-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.  相似文献   

5.
Two extracellular polysaccharides, ENP1 and ENP2, were isolated from the fermentation liquid of the marine fungus Epicoccum nigrum JJY-40 by anion-exchange chromatography and gel-filtration chromatography, and their structures were investigated using chemical and spectroscopic methods including methylation analysis and NMR spectroscopy. The results demonstrated that ENP1 was composed of mannose, glucose, and galactose in the molar ratio of 5.0:2.1:1.0, and the main chain of the polysaccharide consisted of (1?→?2)-linked mannose, (1?→?3)-linked mannose, terminal mannose, (1?→?6)-linked glucose, (1?→?4)-linked glucose, and (1?→?4)-linked galactose. ENP2 was composed of mannose, galactose, glucose, and glucuronic acid in a molar ratio of 12.4:11.2:8.3:1.0, and its glycosidic linkage patterns included terminal mannose, (1?→?6)-linked glucose, (1?→?4)-linked galactose, and (1?→?3)-linked mannose. The two polysaccharides had a partially branched structure with branch point located at C-3 position of (1?→?6)-linked glucose residue. The molecular weights of ENP1 and ENP2 were 19.2 kDa and 32.7 kDa, respectively. Antioxidant properties of the two polysaccharides were evaluated with hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and lipid peroxidation inhibition in vitro, and results showed that ENP2 and ENP1 had good antioxidant activities, especially ENP2. ENP2 could be effective as a potential antioxidant.  相似文献   

6.
Three polysaccharides, two heteroglycans (PL-1 and PL-4) and one glucan (PL-3), were solubilized from the fruit bodies of Ganoderma lucidum and isolated by anion-exchange and gel-filtration chromatography. Their structural features were elucidated by glycosyl residue and glycosyl linkage composition analyses, partial acid hydrolysis, acetolysis, periodate oxidation, 1D and 2D NMR spectroscopy, and ESI-MS experiments. The data obtained indicated that PL-1 had a backbone consisting of 1,4-linked alpha-D-glucopyranosyl residues and 1,6-linked beta-D-galactopyranosyl residues with branches at O-6 of glucose residues and O-2 of galactose residues, composed of terminal glucose, 1,6-linked glucosyl residues and terminal rhamnose. PL-3 was a highly branched glucan composed of 1,3-linked beta-D-glucopyranosyl residues substituted at O-6 with 1,6-linked glucosyl residues. PL-4 was comprised of 1,3-, 1,4-, 1,6-linked beta-D-glucopyranosyl residues and 1,6-linked beta-D-mannopyranosyl residues. These polysaccharides enhanced the proliferation of T- and B-lymphocytes in vitro to varying contents and PL-1 exhibited an immune-stimulating activity in mice.  相似文献   

7.
Structure of a fucoidan from the brown seaweed Fucus serratus L   总被引:1,自引:0,他引:1  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1:0.1 and small amounts of xylose and galactose were isolated from the brown seaweed Fucus serratus L. The fucoidan structure was investigated by 1D and 2D 1H and 13C NMR spectroscopy of its desulfated and de-O-acetylated derivatives as well as by methylation analysis of the native and desulfated polysaccharides. A branched structure was suggested for the fucoidan with a backbone of alternating 3- and 4-linked alpha-L-fucopyranose residues, -->3)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->, about half of the 3-linked residues being substituted at C-4 by trifucoside units alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-alpha-L-Fucp-(1-->. Minor chains built up of 4-linked alpha-fucopyranose and beta-xylose residues were also detected, but their location, as well as the position of galactose residues, remained unknown. Sulfate groups were shown to occupy mainly C-2 and sometimes C-4, although 3,4-diglycosylated and some terminal fucose residues may be nonsulfated. Acetate was found to occupy C-4 of 3-linked Fuc and C-3 of 4-linked Fuc in a ratio of about 7:3.  相似文献   

8.
Extracellular polysaccharides were isolated from Pseudomonas caryophylli CFR 1705 grown on lactose containing medium. The major fraction (no.1) obtained on DEAE-cellulose chromatography was composed of rhamnose, mannose and glucose in the ratio 1:3.26:4.97, respectively, and having a molecular weight of 1.1×106 Da. Methylation followed by GC-MS analysis revealed it to be a highly branched 1,4-linked hexosan with mannose and glucose as the branch-off residues at positions C-2 and C-6 of the main chain. Rhamnose was essentially found as non-reducing terminal residue.  相似文献   

9.
Urospora wormskioldii and Codiolum pusillum are different life forms of this arctic alga. They both metabolise d-glucose, d-fructose, sucrose, myo-inositol, glyceric acid, and malto-oligosaccharides. In Codiolum, 1,3-linked d-glucose and l-rhamnose oligosaccharides were also present. The major polysaccharide extracted by water from both forms is a polydisperse, sulphated glucuronoxylorhamnan. Polysaccharides containing 1,3-, 1,4-, and triply linked d-glucose residues were also isolated from the aqueous extracts. Pure amylopectin-type polysaccharides were isolated from acid extracts of both forms of the weed. The major difference between the two forms was the presence in Codiolum of a sulphated (1→4)-linked β-d-mannan branched at C-6 and sulphated at C-2. The similarities and differences of the carbohydrates with those of Urospora penicilliformis and other green seaweeds are discussed.  相似文献   

10.
Pectic polysaccharides (6.74 g) were extracted from soybean okara (soybean curd waste, 30 g) with sodium hexametaphosphate solution. The extract was separated by DEAE-cellulose chromatography into galacturonate poor and galacturonate rich fractions. The fractionated polysaccharides were exhaustively degraded by three kinds of pectinase and two kinds of hemicellulase, namely exo- and endopolygalacturonases, exopolygalacturonate lyase, exogalactanase and exoarabinase. The values of the degradation limit revealed that the soybean pectic polysaccharides comprise regions of galacturonan and rhamnogalacturonan carrying side chains composed mainly of homogeneous arabinan and galactan. The galacturonan regions were distributed at both the reducing and nonreducing ends of the polysaccharide.  相似文献   

11.
《Carbohydrate polymers》1987,7(2):143-158
A rhamnogalacturonan, extracted with hot water from the aqueous ethanol insoluble residue of flue-cured bright tobacco lamina, was purified by tangential flow ultrafiltration, ion chromatography and gel filtration. It was characterized by chemical and spectroscopic methods. Fractionation revealed that the rhamnogalacturonan consisted of a series of polysaccharides with different amounts of methyl-esterified galactopyranosyluronic acid residues in the backbone and different amounts of neutral sugar residues.The main pectic polysaccharide fraction has a backbone consisting of 4-linked α-d-galactopyranosyluronic acid residues interspersed with 2-linked l-rhamnopyranosyl residues. Approximately 22% of the galactopyranosyluronic acid residues are methylated. The main chain is branched at C-4 of rhamnose with neutral sugar side chains containing terminal and 4-linked β-d-galactopyranosyl and terminal and 5-linked α-l-arabinofuranosyl residues. The average degree of polymerization of this tobacco rahamnogalacturonan was estimated to be 400.  相似文献   

12.
Water-soluble polysaccharide fractions were extracted from the fruit of rowan Sorbus aucuparia L. by water and 0.7% ammonium oxalate water solution. The total yield was 4.2%. It is demonstrated that these fractions are pectin polysaccharides, and their carbon chains are primarily composed of galactunoric acid residue (up to 68%), arabinose and galactose. Sephacryl S-500 gelfiltration of rowan fruit pectin polysaccharides proved their relative homogeneity pertaining to their molecular weights, whereas endo-polygalacturonase enzymatic hydrolysis gives evidence of the presence of extended galacturonan (rhamnogalacturonan) ranges in their carbohydrate chains. Methylation of rowan pectin polysaccharides shows that their carbohydrate pendants are formed by 1,5-linked arabinofuranose residue, 1,4-linked glucopyranose residue, 1,6-linked galactopyranose residue, 1,3,6-linked mannopyranose residue and 1,3,6-linked galactopyranose residue. Glucopyranose residue is identified at non reducible ends of these pendants. It was demonstrated that antioxidant activity of water solutions of pectin polysaccharides extracted from rowan S. aucuparia L. (0.5 mg/mL) is 37?C53% of trolox activity, which is 100%.  相似文献   

13.
K S Ramana  E V Rao 《Phytochemistry》1991,30(1):259-262
A sulphated heteropolysaccharide, [alpha]27D + 59.9 degrees, has been isolated from a green seaweed, Cladophora socialis, by extraction with dilute acid and purified by fractional precipitation. The polymer is composed of galactose (58.3%), arabinose (31.8%), xylose (10.6%) and sulphate (16.9%). The results of methylation analysis, periodate oxidation and partial acid hydrolysis studies indicate that the polymer is a branched one and is composed of 1,3-linked galactose and 1,4-linked arabinose units. Xylose is present at the non-reducing end position of the branches. Both arabinose and galactose carry branches. Desulphation and subsequent analysis of the polymer show that some of the arabinose units carry sulphate groups at C-3 and some of the galactose units carry the sulphate groups at C-4 and some at C-4 and C-6 as well.  相似文献   

14.
Ripening of mango is characterized by a gradual, but natural softening of the fruit, which is due to progressive depolymerization of pectic and hemicellulosic polysaccharides with significant loss of galactose, arabinose and mannose residues at the ripe stage. Structural characterization employing permethylation followed by GC-MS analysis, IR and 13C NMR measurements revealed the major CWS fractions of both unripe and ripe mangoes to be of variable molecular weights and having a 1,4-linked galactan/galacturonan backbone, which is occasionally involved in side chain branches consisting of single residues of galactose and arabinose or oligomeric 1,5-linked arabinofuranose residues linked through 1,3-linkages; whereas the major hemicellulosic fractions of unripe mango to be of xyloglucan-type having 1,4-linked glucan backbone with branching by non-reducing terminal arabinose and xylose residues.  相似文献   

15.
《Phytochemistry》1986,25(7):1645-1647
A sulphated heteropolysaccharide was isolated from a green seaweed, Caulerpa taxifolia, by extraction with acid and purified via its copper complex. Methylation analysis of both the sulphated and desulphated polysaccharides revealed the presence of 1,4-linked xylose, 1,6-linked galactose, 1,4,6-linked mannose and non-reducing galactose end group units which are all devoid of sulphate groups. In addition 1,4-linked galactose units sulphated at C-3 are also present. Quantitative periodate oxidation showed a consumption of 1.30 and 1.60 moles of oxidant per anhydrosugar unit in the sulphated and desulphated polysaccharides respectively. The oxo-polysaccharides after reduction and hydrolysis revealed the presence of glycerol, erythritol and unoxidized galactose in the mol ratio 11.6:5.1:4.9 and 11.2:5.0:1.0 respectively, besides threitol (3.9 mol) in the desulphated polysaccharide.  相似文献   

16.
After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.  相似文献   

17.
The seed mucilage from Plantago major L. contains acidic heteroxylan polysaccharides. For further structural analysis, oligosaccharides were generated by partial acid hydrolysis and then isolated by high-pH anion-exchange chromatography (HPAEC). Each HPAEC fraction was shown by ESMS to contain one major oligosaccharide and several minor components. Partial structures of the oligosaccharides were determined using GC-MS, ESMS and ES tandem mass spectrometry (ESMS/MS). A (1-->4)-linked xylan trisaccharide and (1-->3)-linked xylan oligosaccharides with DP 6-11 suggested that the backbone of the heteroxylan polysaccharide consisted of blocks of (1-->4)-linked and (1-->3)-linked Xylp residues. A (1-->2)-linked Xylp disaccharide and a branched tetrasaccharide were also found, revealing that single Xylp residues are linked to the O-2 of some of the (1-->4)-linked Xylp residues in the backbone. In addition, our results confirm the presence of side chains consisting of the disaccharide GlcpA-(1-->3)-Araf.  相似文献   

18.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

19.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

20.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号