首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies concerning the localization of immune complexes in lymphoid follicles and the involvement of these trapped immune complexes in the regulation of the immune response have thus far been performed with poorly defined complexes in terms of size and composition. For that reason, the minimum requirements for trapping in terms of number of antigen- and antibody molecules present in immune complexes could not be determined. We here describe the production and in vivo use of a monomeric HSA-HRP antigen-enzyme conjugate, readily demonstrable in cryostat sections and ELISA. This conjugate was obtained by combining the glutaraldehyde coupling-method with chromatography to fractionate monomeric and multimeric constituents. SDS-PAGE analysis showed that the conjugate consisted of a single molecular species of 109 kDa, whereas the often used periodate oxidation coupling method yielded a heterogeneous population of multimeric, oligomeric and monomeric molecules. We investigated the minimal size requirements for the composition of immune complexes to be trapped in murine spleen follicles using three different conjugates (monomeric HSA-HRP, multimeric HSA-HRP and multimeric HSA-HRP-Penicillin) and a panel of anti-HSA and anti-Penicillin monoclonal antibodies. We demonstrate that the smallest immune complexes, consisting of one antibody and two conjugate molecules, do not localize in splenic follicles. Immune complexes prepared with a single monoclonal antibody localize in follicles only if the epitope recognized occurs repeatedly on the antigen. The relevance of these results for physiological follicular trapping of protein antigens is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary Studies concerning the localization of immune complexes in lymphoid follicles and the involvement of these trapped immune complexes in the regulation of the immune response have thus far been performed with poorly defined complexes in terms of size and composition. For that reason, the minimum requirements for trapping in terms of number of antigen- and antibody molecules present in immune complexes could not be determined. We here describe the production and in vivo use of a monomeric HSA-HRP antigen-enzyme conjugate, readily demonstrable in cryostat sections and ELISA. This conjugate was obtained by combining the glutaraldehyde coupling-method with chromatography to fractionate monomeric and multimeric constituents.SDS-PAGE analysis showed that the conjugate consisted of a single molecular species of 109 kDa, whereas the often used periodate oxidation coupling method yielded a heterogeneous population of multimeric, oligomeric and monomeric molecules.We investigated the minimal size requirements for the composition of immune complexes to be trapped in murine spleen follicles using three different conjugates (monomeric HSA-HRP, multimeric HSA-HRP and multimeric HSA-HRP-Penicillin) and a panel of anti-HSA and anti-Penicillin monoclonal antibodies. We demonstrate that the smallest immune complexes, consisting of one antibody and two conjugate molecules, do not localize in splenic follicles. Immune complexes prepared with a single monoclonal antibody localize in follicles only if the epitope recognized occurs repeatedly on the antigen.The relevance of these results for physiological follicular trapping of protein antigens is discussed. The described method for the production of monomeric enzyme-labelled protein applicable in histochemistry and ELISA should prove useful to prepare other conjugates of defined size for studies of trapping and other applications.Abbreviations FDC follicular dendritic cell - HRP horseradish peroxidase - HSA human serum albumin - HY anti-HSA hyperimmune serum - MAb monoclonal antibody - Pen penicillin  相似文献   

3.
Immunoperoxidase Stain of Measles Antigen in Tissue Culture   总被引:6,自引:2,他引:4       下载免费PDF全文
A specific electron microscopy staining technique for measles antigen has been developed by using Vero cells infected with a subacute sclerosing panencephalitis (SSPE) measles virus strain and fixed in glutaraldehyde or formaldehyde. Peroxidase-labeled antibody was prepared according to the method of Avrameas (4). Sera from SSPE patients with high measles antibody titer as well as normal human sera with and without measles antibody were used. With both fixatives, specific labeling was obtained on the surface of infected cells, on the budding site, and on complete viral particles. The cell membrane staining sometimes had a patchy distribution in that the reaction was most intense on the surface projections in front of each nucleocapsid. This suggests modification of the cell membrane in association with the nucleocapsids. In contrast, no label was detected on the membranes of the cells during the latent period from penetration through maturation of the virus. In formaldehyde-fixed cultures, cytoplasmic inclusions were stained, and this label was located on the "fuzzy" material around the nucleocapsids. The smooth type of nucleocapsids, mainly seen in the nucleus, were never labeled. These findings suggest that the antigenic nature of the "fuzzy" nucleocapsids in the cytoplasm may be different from that of the "smooth" nucleocapsids. The immunoperoxidase method gives good resolution of viral antigenic sites at high magnifications under electron microscopy and may be of value in studies on the immunopathogenesis of SSPE and other chronic viral infections.  相似文献   

4.
Recent scanning electron microscopic studies on isolated follicular dendritic cells (FDC) showed that dendrites of certain FDC were "beaded," i.e., consisting of a series of interconnected immune complex coated bodies (termed "iccosomes," measuring 0.3 to 0.7 micron diameter). In vitro these iccosomes detach from one another with ease. The major objectives herein were to establish whether these structures can be detected in sections and whether iccosomes serve to disseminate antigen in vivo. Beginning at day 1, the time point used for isolating beaded FDC, the popliteal lymph nodes of immune C3H mice were studied with light and transmission electron microscopy for 2 wk (i.e., at days 1, 3, 5, 8, and 14) after hind footpad injection of the histochemically detectable antigen, horseradish peroxidase (HRP). Iccosomes (0.25 to 0.38 micron diameter), contoured by a peroxidase (PO)-positive coat of HRP-anti-HRP complexes, were first detected by transmission electron microscopy at day 1 adjacent to cell bodies of certain FDC. Within their limiting membrane they contained flocculent material that was PO positive. At day 3 by light microscopy, germinal centers were seen enlarged and the antigen-retaining reticulum, composed of antigen-bearing FDC, appeared diffuse. This coincided with the transmission electron microscopic visualization of a dispersed state of iccosomes among the follicular lymphocytes. At that time iccosomes were seen attached to the surface of lymphocytes via PO-positive immune complexes and were surrounded by microvillous processes of these cells. Germinal center lymphocytes and tingible body macrophages both responded to contact with iccosomes by endocytosis. Antigen-containing tingible body macrophage were most conspicuous by light microscopy at day 5, when transmission electron microscopy showed that the majority of germinal center lymphocytes contained endocytosed HRP in secondary lysosome-like granules associated with the Golgi apparatus. The number of dispersed iccosomes was markedly reduced by day 5. In controls injected with HSA, a PO-negative antigen, lymphocytes and tingible body macrophages were PO-negative. The presence of antigen in both cell types was confirmed through the use of a gold-conjugated antigen (goat IgG). Simultaneous immunoperoxidase labeling of the same tissues with anti-Ia showed the gold conjugate containing B cells to be Ia+. Antigen-positive B cells and tingible body macrophages were greatly reduced in numbers by day 14, suggesting the intracellular fragmentation of the antigen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The binding of mouse antibodies to the surface antigens of juvenile and 7 and 28 day old Echinostoma caproni was examined by transmission electron microscopy of thin sections of parasites, which were treated with antibodies in a double sandwich technique with ferritin-conjugated antibody. The surface of freshly recovered mature adult parasites was covered with an irregular but often rather intensive mouse antibody containing matrix, which probably represents a layer of mouse antibody/parasite antigen complexes. The complexes were lost after in vitro culturing of the parasites for 24 h, but incubation of the in vitro-maintained antibody-negative adult parasites with immune mouse serum led to reformation of a similar but less intensive cover with immune complexes. Juvenile and young stages of E. caproni, which had never been exposed to host antibodies, obtained a layer of immune complexes on their surface after incubation with immune mouse serum in vitro. In both young and mature parasites, the antibody-antigen complexes were observed to be rather loosely attached to the outer surface of the parasites, where the antigens probably constitute a part of the irregular glycocalyx of the organisms. It may also be that the antigens are present as isolated excretion along the surface of the parasites. Several sections indicated that the parasite surface antigens may be present in the tegument in vesicles which fuse with the outer membrane of the parasite whereby their contents are released to the exterior.  相似文献   

6.
Selective iodination and polypeptide composition of pinocytic vesicles   总被引:30,自引:15,他引:15       下载免费PDF全文
We describe a method for the specific radioiodination of pinocytic vesicles (PVs) based upon the simultaneous endocytosis of lactoperoxidase (LPO) and glucose oxidase (GO). Initial experiments indicated that LPO was interiorized by the macrophage cell line J774 by fluid phase pinocytosis and without detectable binding to the plasma membrane (PM). Interiorization varied linearly with enzyme concentration and exposure time, was temperature dependent, and was undetectable at 4 degrees C. Employing EM cytochemistry, LPO activity was restricted to PVs after a 3- to 5-min pulse at 37 degrees C. These results formed the basis of the method for iodinating the luminal surface of PVs: 5-min exposure to both LPO and GO at 37 degrees C followed by washes and iodination (addition of 125I and glucose) at 4 degrees C. Enzyme-dependent incorporation of iodide into the polypeptides of both PV membrane and contents occurred. Several lines of evidence indicated that there was selective labeling of PV as opposed to PM. Iodination did not occur if the pinocytic uptake of LPO ad GO was inhibited by low temperature. EM autoradiography showed a cytoplasmic localization of grains, whereas a clear PM association was evident with surface labeling. LPO was iodinated only after PV labeling and was present within organelles demonstrating latency. After PV iodination, > 75% of several labeled membrane antigens could be immunoprecipitated by monoclonal antibodies only after cell lysis. In contrast, all labeled antigens were accessible to antibody on intact cells after surface labeling. The polypeptide compositions of PM and PV membrane were compared by SDS polyacrylamide gel electrophoresis and by quantitative immune precipitation using a panel of anti-J774 monoclonal antibodies. The electrophoretic profiles of iodinated proteins (15-20 bands) were strikingly similar in NP-40 lysates of both PV and PM iodinated cells. In addition, eight membrane antigens examined by immune precipitation, including the trypsin-resistant immunoglobulin (Fc) receptor and the H-2Dd histocompatibility antigen, were found to be iodinated to the same relative extents by both labeling procedures. We conclude that PV membrane is formed from a representative sample of PM polypeptide components.  相似文献   

7.
The endocytosis of a monoclonal antibody recognising a cell surface glycoprotein antigen has been investigated using several different fluorescent conjugates. These conjugates have been employed for both fluorescence microscopy to show the qualitative changes in distribution of antibody conjugates during endocytosis, and also flow cytofluorimetry to show the quantitative changes in fluorescence intensity associated with this redistribution. Using an antibody directly labelled with fluorescein it was difficult to demonstrate endocytosis due to the inability to distinguish clearly between internal and external fluorescence. However, a fluorescein-HSA-antibody conjugate which was heavily quenched at the cell surface was endocytosed and degraded during incubation at 37 degrees C for 4 h and was then visualised in a perinuclear distribution by the addition of agents to modify intracellular pH. This experiment demonstrated that such conjugates became localised within an acidic internal compartment. A tetramethylrhodamine-HSA-conjugate also demonstrated a similar perinuclear distribution but without the addition of endosomal pH modifiers. When used in conjunction with a fluorescein rabbit anti-HSA second label this conjugate also showed that not all conjugate was endocytosed during a 4-h period; some conjugate remained bound to the cell surface. These experiments suggested that endocytosis in this system differs from receptor-mediated endocytosis via coated pits which is reported to be more rapid and complete.  相似文献   

8.
The preparation of antimyosin conjugated with mercury and fluorescein is described. The mercury was introduced to permit visualization of the antibody in the electron microscope. An organic mercurial, tetraacetoxymercuriarsanilic acid, was prepared and coupled to the antibody through the diazonium salt. The fluorescein was coupled through the isocyanate by a modification of the procedure described by Coons and Kaplan. The antibody conjugate retained its specificity of reaction with the tissue antigen. This was demonstrated by the staining pattern obtained in fluorescence microscopy.  相似文献   

9.
Extracts of isolated microvascular endothelial cells (MEC) and cultured bovine aortic endothelial cells (BAEC) were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), electrotransfer and incubation with albumin either radioiodinated or adsorbed to 5-nm gold particles. Both ligands reacted exclusively with two peptides of 18 and 31 kDa. To the 18 kDa peptide (excised from preparative SDS-PAGE), an antibody was raised in rabbits and purified by affinity on 18 kDa obtained from two-dimensional gel electrophoresis and immobilized on nitrocellulose paper. The specificity of the anti-18 kDa was assessed by immunoblotting and immunoprecipitation of endothelial cell extracts. To check whether the 18 kDa peptide is exposed on the endothelial cell surface and/or its components (uncoated pits, open plasmalemmal vesicles), the apical membrane of BAEC was radioiodinated, the solubilized proteins incubated with the anti-18 kDa, and the immune complexes formed were precipitated with protein A-Sepharose CL-4B. The ensuing SDS-PAGE and autoradiography revealed that from all radioiodinatable surface proteins, the 18 kDa was the only polypeptide immunoprecipitated by the anti-18 kDa antibody. To localize the 18 kDa peptide, we applied indirect immunofluorescence technique on cultured MEC and BAEC and immunoelectron microscopy (EM) on ultrathin cryosections of mouse heart. Nonpermeabilized whole MEC and BAEC incubated with anti-18 kDa followed by rhodamine-conjugated second antibody showed a relatively intense surface fluorescence often appearing as small dots. At the EM level, heart ultrathin cryosections exposed anti-18 kDa followed by gold-conjugated second antibody revealed that 18 kDa was primarily associated with the membrane of plasmalemmal vesicles of capillary endothelia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A method is described for ultrastructural localization of immune complex receptors on the surface of viable peritoneal exudate cells. The technique entails incubation with a soluble complex of horseradish peroxidase (HRP) and specific antibody to HRP at 4 degrees C followed by exposure to diaminobenzidine and processing for electron microscopy. The bound immune complexes were evident as focal deposits of HRP reaction product, adhering closely to the external surface of macrophages with an uninterrupted periodicity varying between 30 and 120 nm. Following incubation with an insoluble immune complex containing a higher proportion of antibody, receptor sites stained frequently, but large aggregates adhered to the cells. Rinsing cells after staining with soluble complexes partially displaced the bound immune complexes. Fixation prior to exposure to immune complexes largely eliminated the binding capacity of the immune complex receptors.  相似文献   

11.
A monoclonal antibody, designated mAb P86/5, was generated by immunization of female Balb/c mice with a membrane vesicle fraction composed of the outer acrosomal membrane and plasma membrane (PM-OAM). As determined by fluorescence microscopy and electron microscopy P86/5 recognizes a sperm plasma membrane antigen that is restricted to the sperm head. In intact spermatozoa the P86/5-antigen is distributed over the surface of the sperm head with the exception of the rostral region. By comparing the antibody binding pattern generated at 4 degrees C and 25 degrees C, it could be shown that the P86/5-antigen is capable to diffuse freely within the cell membrane overlying the acrosome whereas its lateral mobility is restricted to the post-acrosomal region. The P86/5-antigen had a molecular weight of about 78 kDa as revealed by SDS-PAGE and western blotting. The glycoprotein nature of the P86/5-antigen was established by lectin affinity chromatography.  相似文献   

12.
We describe a unique mesangial matrix component of the rat glomerulus identified by a murine monoclonal antibody. The antigen is present exclusively in the glomerular mesangium and cannot be detected in other rat tissues by indirect immunofluorescence techniques or following pretreatment of tissue sections with acid urea or other nonionic detergents. Specific immunoprecipitation of the solubilized antigen yields a single peptide with an apparent m.w. of 81,000 when analyzed by discontinuous SDS-PAGE. This mesangial matrix component is collagenase resistant and trypsin sensitive. Perfusion of an isolated kidney preparation with this antibody results in direct binding of the mouse immunoglobulin to its mesangial antigen. Passive administration of the monoclonal antibody to Lewis rats results in characteristic electron dense deposits within the mesangial matrix that can be visualized ultrastructurally as early as 3 days. The immune deposits form without the activation of rat complement and persist for longer periods than those that develop after the planting of aggregated proteins or preformed immune complexes. Experimental animals that received either a monoclonal antibody specific for laminin or a non-kidney binding preparation did not develop such immune deposits at any time during the course of the autologous phase of the immune process. The results obtained in this study indicate that electron dense immune deposits can develop in the mesangium with the participation of a unique intrinsic matrix component and specific circulating monoclonal antibodies by an in situ mechanism of immune complex formation.  相似文献   

13.
Immunolabeling with immune complexes of primary and secondary antibodies offers an attractive method for detecting and quantifying specific antigen. Primary antibodies maintain their affinity for specific antigen after labeling with Fab fragments in vitro. Incubation of these immune complexes with excess normal serum from the same species as the primary antibody prevents free Fab fragments from recognizing immunoglobulin. Effectively a hybrid between traditional direct and indirect immunolabeling techniques, this simple technique allows primary antibodies to be non-covalently labeled with a variety of reporter molecules as and when required. Using complexes containing Fab fragments that recognize both the Fc and F(ab')2 regions of IgG, we show that this approach prevents nonspecific labeling of endogenous immunoglobulin, can be used to simultaneously detect multiple antigens with primary antibodies derived from the same species, and allows the same polyclonal antibody to be used for both antigen capture and detection in ELISA.  相似文献   

14.
The 63 kDa surface antigen of Leishmania promastigotes is one of the most important virulent factors in establishing the host parasite relationship. This glycoprotein is revealed by surface iodination study as well as by metabolic labeling and immunoblot methods. In search of this specific antigen for serodiagnosis, immune complexes (ICs) were isolated from kala-azar patient sera and analysed by SDS-PAGE and Western immunoblotting. The immunoblot of kala-azar IC with patient sera, antipromastigote sera and anti gp63 sera detected the major antigen of 55 kDa. This recognition suggests that 55 kDa antigen and gp63 have common antigenic epitope(s). Normal IC did not react with anti gp63 sera indicating absence of this antigen in normal IC. To confirm the parasitic origin of the 55 kDa antigen of kala-azar IC, in vitro IC was formed with parasite antigen and acid dissociated kala-azar IC antibody. This indicated the antigenic similarity of the 55 kDa antigen and gp63 antigen of the parasite. This also suggested that the former antigen may have been processed from gp63. In summary, identification of parasite antigen (55 kDa) in IC of kala-azar patients' sera may be useful in developing a serodiagnostic assay of visceral leishmaniasis. Several other antigens are visualized in kala-azar IC when developed with patient sera. But specificity and efficacy of these antigens have not yet been evaluated in serodiagnosis of the disease.  相似文献   

15.
Synchrotron-based X-ray fluorescence (S-XRF) is a powerful technique for imaging the distribution of many biologically relevant elements as well as of “artificial” elements deliberately introduced into tissues and cells, for example, through functionalized nanoparticles. In this study, we explored the potential of S-XRF for chemical nanoimaging (100 nm spatial resolution, nanoXRF) of human cells through the use of functionalized CdSe/ZnS quantum dots (QDs). We used a commercially available QD-secondary antibody conjugate to label the cancer marker HER2 (human epidermal growth factor receptor 2) on the surface of SKOV3 cancer cells and β-tubulin, a protein associated with cytoskeleton microtubules. We set up samples with epoxy inclusion and intracellular labeling as well as samples without epoxy inclusion and with surface labeling. Epoxy inclusion, also used in electron microscopy, has the advantage of preserving cell morphology and guaranteeing long-term stability. QDs proved to be suitable probes for nanoXRF due to the Se emission band, which is not in close proximity to any other emission band, and the signal specificity, which is preserved in both types of labeling. Therefore, nanoXRF using QD-based markers can be very effective at colocalizing specific intracellular targets with elements naturally present in the cell and may complement confocal fluorescence microscopy in a synergistic fashion.  相似文献   

16.
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA·antigen immune complexes are selectively transported across Peyer''s patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (FcαRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.  相似文献   

17.
We have characterized an embryonic antigen on the surface of chick erythrocytes using immunochemical electron microscopy. An indirect surface labeling technique (hemocyanin conjugated to goat antirabbit IgG and specific antisera prepared in rabbits) revealed that the antigenic sites, at hatching, nearly saturate the surface of erythrocytes with hemocyanin markers. The number of antigenic sites gradually decreases with age, and the antigen can no longer be detected at 7 months. Further, the antigen has been detected on the very earliest primitive erythrocytes which form in the extra-embryonic mesenchyme before circulation begins. The embryonic antigen appears to be firmly associated with the erythrocyte surface and cannot be removed by extensive washing either with phosphate-buffered saline or with EDTA. Labeling unfixed cells at 37 °C produces clustering of the surface markers, suggesting that the antigen is associated with a membrane component which is fairly free to move in the plane of the membrane. In addition, the erythrocytes from newly hatched chicks were found to agglutinate more readily with several different lectins, particularly Concanavalin A (ConA), than did the erythrocytes from adults. Three times more ConA is bound to chick erythrocytes than to adult erythrocytes, as estimated by electron microscopy. Although this difference in lectin binding suggests that the ConA-binding sites might be related to the embryonic antigen, the sugars known to block lectin-induced hemagglutination had no blocking effect on antiserum-induced agglutination or on antibody binding, as visualized by the electron microscope technique. Also, ConA binding was not inhibited by treatment of the chick erythrocytes with the specific antiserum.  相似文献   

18.
We describe an artificial substrate system for optimization of labeling parameters in electron microscope immunocytochemical studies. The system involves use of blocks of glutaraldehyde-polymerized BSA into which a desired antigen is incorporated by a simple soaking procedure. The resulting antigen-impregnated artificial substrate can then be fixed and embedded identically to a piece of tissue. The BSA substrate can also be dried and then sectioned for immunolabeling with or without chemical fixation and without exposing the antigen to dehydrating agents and embedding resins. The effects of various fixation and embedding procedures can thus be evaluated separately. Other parameters affecting immunocytochemical labeling, such as antibody and conjugate concentration, can also be evaluated. We used this system, along with immunogold labeling, to determine quantitatively the optimal fixation and embedding conditions for labeling of hepatitis B surface antigen (HbsAg), human IgG, and horseradish peroxidase. Using unfixed and unembedded HBsAg, we were able to detect antigen concentrations below 20 micrograms/ml. We have shown that it is not possible to label HBsAg within resin-embedded cells using conventional aldehyde fixation protocols and polyclonal antibodies.  相似文献   

19.
In electron microscopy, the post-embedding immunogold technique provides a high degree of resolution and the possibility of quantitation owing to the intrinsic characteristics of the colloidal gold marker. Application of this technique to the subcellular localization of multiple antigens by differential labeling using gold markers of different sizes, or to double labeling using the same primary antibody isotype with serial silver enhancement, has been reported. We have incorporated this double labeling technique into a modified procedure that produces excellent labeling and ultrastructural preservation, even after exposure of ultrathin sections large enough to cover a 300- micro m-diameter single-hole grid to hot antigen retrieval solutions and prolonged labeling protocols.  相似文献   

20.
The present resolution (75-100 A) of the conventional scanning electron microscope (SEM) and its ability to image the surfaces of large numbers of whole cells in situ permit the approach of problems such as viral and cell surface antigen localization by immunological labeling with visual markers. Identification of virus and cell surface antigens in situ has been accomplished in indirect reactions by unconjugated markers. Hemocyanin (Hcy) from whelk, Busycon canniculatum, has been developed as an immunospecific marker for virion and cell surface labeling in the electron microscope. Its size (30 x 50 nm) and distinct cylindrical shape permit easy visualization in the SEM and the transmission electron microscope (TEM). The Hcy method involves the preparation of antisera to Hcy in appropriate hosts for use in an unlabeled antibody macromolecule procedure based exclusively on antigen-antibody affinity to couple the macromolecule to the antigen site. Further correlative data from fluorescence microscopy can be obtained from similarly labeled samples by binding fluorescein to the bridging antibodies used in the Hcy technique. The usefulness of the Hcy marker system was demonstrated by employing highly specific antisera to the major envelope and cell surface glycoprotein (gp70) of Rauscher murine leukemia virus (R-MuLV), a type C retrovirus. The antiserum was shown to bind to the virion and cell surfaces of virus-infected cells in the homologous virus-infected cell system. It also demonstrated the expression of R-MuLV gp70-related antigens on a murine cell line Mm5mt/c1 which produces mouse mammary tumor virus (MuMTV), a type B retrovirus. Furthermore, when used in the Hcy marker system the anti-gp70 serum was able to distinguish type B from type C budding virus on the same cell. Methods for the preparation of immunoreagents and labeling of cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号