共查询到20条相似文献,搜索用时 0 毫秒
1.
K Matsuo T Gokita H Karibe M K Uchida 《Biochemical and biophysical research communications》1989,165(2):722-727
Rat uterine smooth muscle shows sustained contraction to oxytocin in Ca2+-free medium with EGTA, that is called "Ca-free contraction"(1). Participation of the rise in cytosolic free Ca2+ in this Ca-free contraction was tested. In Ca-free contraction, the cytosolic free Ca2+ level was not changed at all as measured with fura-2. Further, the chelation of cytosolic free Ca2+ with quin-2 did not at all affect Ca-free contraction. These results strongly suggest that Ca-free contraction is not triggered by Ca2+. 相似文献
2.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway. 相似文献
3.
Cao W Chen Q Sohn UD Kim N Kirber MT Harnett KM Behar J Biancani P 《American journal of physiology. Cell physiology》2001,280(4):C980-C992
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction. 相似文献
4.
Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase 总被引:7,自引:0,他引:7
Deng JT Van Lierop JE Sutherland C Walsh MP 《The Journal of biological chemistry》2001,276(19):16365-16373
Smooth muscle contraction follows an increase in cytosolic Ca(2+) concentration, activation of myosin light chain kinase, and phosphorylation of the 20-kDa light chain of myosin at Ser(19). Several agonists acting via G protein-coupled receptors elicit a contraction without a change in [Ca(2+)](i) via inhibition of myosin light chain phosphatase and increased myosin phosphorylation. We showed that microcystin (phosphatase inhibitor)-induced contraction of skinned smooth muscle occurred in the absence of Ca(2+) and correlated with phosphorylation of myosin light chain at Ser(19) and Thr(18) by a kinase distinct from myosin light chain kinase. In this study, we identify this kinase as integrin-linked kinase. Chicken gizzard integrin-linked kinase cDNA was cloned, sequenced, expressed in E. coli, and shown to phosphorylate myosin light chain in the absence of Ca(2+) at Ser(19) and Thr(18). Subcellular fractionation revealed two distinct populations of integrin-linked kinase, including a Triton X-100-insoluble component that phosphorylates myosin in a Ca(2+)-independent manner. These results suggest a novel function for integrin-linked kinase in the regulation of smooth muscle contraction via Ca(2+)-independent phosphorylation of myosin, raise the possibility that integrin-linked kinase may also play a role in regulation of nonmuscle motility, and confirm that integrin-linked kinase is indeed a functional protein-serine/threonine kinase. 相似文献
5.
The dependence of airway smooth muscle on extracellular Ca2+ for contraction is influenced by the presence of cartilage 总被引:1,自引:0,他引:1
Isolated guinea-pig and rabbit airway smooth muscle preparations lacking cartilage are less able to contract, in response to methacholine, histamine and K+, in the absence of extracellular Ca2+ than cartilage-containing preparations removed from the same animal. Cartilage apparently provides utilizable Ca2+ for contraction of airway smooth muscle. The presence of cartilage, therefore, affects the apparent dependence of the isolated smooth muscle on extracellular Ca2+ for contraction. 相似文献
6.
T Kitazawa B D Gaylinn G H Denney A P Somlyo 《The Journal of biological chemistry》1991,266(3):1708-1715
The Ca2+ sensitivities of tonic (pulmonary and femoral artery) and phasic (portal vein and ileum) smooth muscles and the effects of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) and norepinephrine on Ca2+ sensitivity of force development and myosin light chain (MLC20) phosphorylation were determined in permeabilized preparations that retained coupled receptors and endogenous calmodulin. The Ca2+ sensitivity of force was higher (approximately 3-fold) in the tonic than in the phasic smooth muscles. The nucleotide specificity of Ca2+ sensitization was: GTP gamma S much greater than GTP greater than ITP much greater than CTP = UTP. Baseline phosphorylation (7% at pCa greater than 8) and maximal phosphorylation (58% at pCa 5.0) were both lower in portal vein than in femoral artery (20 and 97%). Norepinephrine and GTP gamma S increased phosphorylation at constant [Ca2+] (pCa 7.0-6.5). MLC20 phosphorylation induced by norepinephrine was completely inhibited by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S). In portal vein at pCa 5, GTP gamma S increased phosphorylation from 58%, the maximal Ca2(+)-activated value, to 75%, and at pCa greater than 8, from 7 to 13%. In femoral artery at pCa 5, neither phosphorylation (97%) nor force was affected by GTP gamma S, while at pCa greater than 8, GTP gamma S caused an increase in force (16% of maximum) with a borderline increase in MLC20 phosphorylation (from 20 to 27%). MLC20 phosphorylation (up to 100%) was positively correlated with force. The major results support the hypothesis that the G-protein coupled Ca2(+)-sensitizing effect of agonists on force development is secondary to increased MLC20 phosphorylation. 相似文献
7.
To investigate the mechanism of smooth muscle contraction, the frequency response of the muscle stiffness of single beta-escin permeabilized smooth muscle cells in the relaxed state was studied. Also, the response was continuously monitored for 3 min from the beginning of the exchange of relaxing solution to activating solution, and then at 5-min intervals for up to 20 min. The frequency response (30 Hz bandwidth, 0.33 Hz (or 0.2 Hz) resolution) was calculated from the Fourier-transformed force and length sampled during a 3-s (or 5-s) constant-amplitude length perturbation of increasing-frequency (1-32 Hz) sine waves. In the relaxed state, a large negative phase angle was observed, which suggests the existence of attached energy generating cross-bridges. As the activation progressed, the muscle stiffness and phase angle steadily increased; these increases gradually extended to higher frequencies, and reached a steady state by 100 s after activation or approximately 40 s after stiffness began to increase. The results suggest that a fixed distribution of cross-bridge states was reached after 40 s of Ca2+ activation and the cross-bridge cycling rate did not change during the period of force maintenance. 相似文献
8.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility. 相似文献
9.
Oreščanin-Dušić Z Miljević CD Slavić M Nikolić-Kokić A Paskulin R Blagojević D Lečić-Toševski D Spasić MB 《Acta physiologica Hungarica》2012,99(2):140-147
Tianeptine is a novel anti-depressant with an efficacy equivalent to that of classical anti-depressants. Additional beneficial effects include neuroprotection, anti-stress and anti-ulcer properties whose molecular mechanisms are still not completely understood but may involve changes in the anti-oxidant defence system. Herein, we have studied the effects of tianeptine on both contractile activity of isolated rat uteri and components of the endogenous anti-oxidative defence system. Tianeptine-induced dose-dependent inhibition of both spontaneous and Ca2+-induced contraction of uterine smooth muscle. The effect was more pronounced in the latter. Tianeptine treatment increased glutathione peroxidase (GSH-Px) and catalase (CAT) activities in spontaneous and Ca2+-stimulated uteri. A significant decrease in glutathione-reductase (GR) activity in both spontaneous and Ca2+-induced uterine contractions after tianeptine treatment indicated a reduction in reduced glutathione and consequently a shift toward a more oxidised state in the treated uteri. In spontaneously contracting uteri, tianeptine caused a decrease in copper-zinc SOD (CuZnSOD) activity. Tianeptine's anti-depressant effects may be accomplished by triggering a cascade of cellular adaptations including inhibition of smooth muscle contractility and an adequate anti-oxidative protection response. 相似文献
10.
Excitatory agonists can induce significant smooth muscle contraction under constant free Ca(2+) through a mechanism called Ca(2+) sensitization. Considerable evidence suggests that free arachidonic acid plays an important role in mediating agonist-induced Ca(2+)-sensitization; however, the molecular mechanisms responsible for maintaining and regulating free arachidonic acid level are not completely understood. In the current study, we demonstrated that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is expressed in vascular smooth muscle tissues. Inhibition of the endogenous iPLA(2) activity by bromoenol lactone (BEL) decreases basal free arachidonic acid levels and reduces the final free arachidonic acid level after phenylephrine stimulation, without significant effect on the net increase in free arachidonic acid stimulated by phenylephrine. Importantly, BEL treatment diminishes agonist-induced Ca(2+) sensitization of contraction from 49 +/- 3.6 to 12 +/- 1.0% (p < 0.01). In contrast, BEL does not affect agonist-induced diacylglycerol production or contraction induced by Ca(2+), phorbol 12,13-dibutyrate (a protein kinase C activator), or exogenous arachidonic acid. Further, we demonstrate that adenovirus-mediated overexpression of exogenous iPLA(2) in mouse portal vein tissue significantly potentiates serotonin-induced contraction. Our data provide the first evidence that iPLA(2) is required for maintaining basal free arachidonic acid levels and thus is essential for agonist-induced Ca(2+)-sensitization of contraction in vascular smooth muscle. 相似文献
11.
12.
Regulation of aorta smooth muscle contraction by Ca ion requires the collaboration of the 80,000 dalton factor and tropomyosin. A method for preparing pure actin from aorta smooth muscle is described. 相似文献
13.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered. 相似文献
14.
15.
Asthma is a chronic disease characterized by inflammation and hypersensitivity of airway smooth muscle cells (ASMCs) to different spasmogens. The past decade has seen increased use of herbal treatments for many chronic illnesses. Ginger (Zingiber officinale) is a common food plant that has been used for centuries in treating respiratory illnesses. In this study, we report the effect of its 70% aqueous methanolic crude extract (Zo.Cr) on acetylcholine (ACh)-induced airway contraction and Ca(2+) signalling in ASMCs using mouse lung slices. Airway contraction and Ca(2+) signalling, recorded via confocal microscopy, were induced with ACh, either alone or after pretreatment of slices with Zo.Cr and (or) verapamil, a standard Ca(2+) channel blocker. ACh (10 micromol/L) stimulated airway contraction, seen as decreased airway diameter, and also stimulated Ca(2+) transients (sharp rise in [Ca(2+)]i) and oscillations in ASMCs, seen as increased fluo-4-induced fluorescence intensity. When Zo.Cr (0.3-1.0 mg/mL) was given 30 min before ACh administration, the ACh-induced airway contraction and Ca(2+) signalling were significantly reduced. Similarly, verapamil (1 micromol/L) also inhibited agonist-induced airway contraction and Ca(2+) signalling, indicating a similarity in the modes of action. When Zo.Cr (0.3 mg/mL) and verapamil (1 micromol/L) were given together before ACh, the degree of inhibition was the same as that observed when each of these blockers was given alone, indicating absence of any additional inhibitory mechanism in the extract. In Ca(2+) -free solution, both Zo.Cr and verapamil, when given separately, inhibited Ca(2+) (10 mmol/L)-induced increase in fluorescence and airway contraction. This shows that ginger inhibits airway contraction and associated Ca(2+) signalling, possibly via blockade of plasma membrane Ca(2+) channels, thus reiterating the effectiveness of this age-old herb in treating respiratory illnesses. 相似文献
16.
Gosens R Stelmack GL Dueck G Mutawe MM Hinton M McNeill KD Paulson A Dakshinamurti S Gerthoffer WT Thliveris JA Unruh H Zaagsma J Halayko AJ 《American journal of physiology. Lung cellular and molecular physiology》2007,293(6):L1406-L1418
Contractile responses of airway smooth muscle (ASM) determine airway resistance in health and disease. Caveolae microdomains in the plasma membrane are marked by caveolin proteins and are abundant in contractile smooth muscle in association with nanospaces involved in Ca(2+) homeostasis. Caveolin-1 can modulate localization and activity of signaling proteins, including trimeric G proteins, via a scaffolding domain. We investigated the role of caveolae in contraction and intracellular Ca(2+) ([Ca(2+)](i)) mobilization of ASM induced by the physiological muscarinic receptor agonist, acetylcholine (ACh). Human and canine ASM tissues and cells predominantly express caveolin-1. Muscarinic M(3) receptors (M(3)R) and Galpha(q/11) cofractionate with caveolin-1-rich membranes of ASM tissue. Caveolae disruption with beta-cyclodextrin in canine tracheal strips reduced sensitivity but not maximum isometric force induced by ACh. In fura-2-loaded canine and human ASM cells, exposure to methyl-beta-cyclodextrin (mbetaCD) reduced sensitivity but not maximum [Ca(2+)](i) induced by ACh. In contrast, both parameters were reduced for the partial muscarinic agonist, pilocarpine. Fluorescence microscopy revealed that mbetaCD disrupted the colocalization of caveolae-1 and M(3)R, but [N-methyl-(3)H]scopolamine receptor-binding assay revealed no effect on muscarinic receptor availability or affinity. To dissect the role of caveolin-1 in ACh-induced [Ca(2+)](i) flux, we disrupted its binding to signaling proteins using either a cell-permeable caveolin-1 scaffolding domain peptide mimetic or by small interfering RNA knockdown. Similar to the effects of mbetaCD, direct targeting of caveolin-1 reduced sensitivity to ACh, but maximum [Ca(2+)](i) mobilization was unaffected. These results indicate caveolae and caveolin-1 facilitate [Ca(2+)](i) mobilization leading to ASM contraction induced by submaximal concentrations of ACh. 相似文献
17.
Ca2+ regulation of vascular smooth muscle 总被引:5,自引:0,他引:5
Regulation of intracellular free Ca2+ concentrations in vascular smooth muscle is accomplished mainly by Ca2+ channels and ATP-dependent Ca2+ pumps in the plasmalemma and sarcoplasmic reticulum (SR). Ca2+ entry through the plasmalemma is apparently mediated by four different pathways: leak; receptor-operated Ca2+ channels; potential sensitive Ca2+ channels; and stretch-activated channels. The agonist releasable intracellular Ca2+ store appears to be identical with the SR. Evidence for the involvement of Ca2+-induced Ca2+ release and inositol-1,4,5-trisphosphate in the release of SR Ca2+ is discussed. Smooth muscle contractions induced by certain agonists may be further enhanced by inhibition of Ca2+ uptake by the SR and of active Ca2+ extrusion across the plasmalemma. At the moment it is not clear from a consideration of the Ca2+ regulatory mechanisms present in vascular smooth muscle how dietary Ca2+ affects vascular tone. The increased Ca2+ permeation through smooth muscle cell membranes of resistance arteries taken from spontaneously hypertensive rats may be relevant to this problem. 相似文献
18.
Down-regulation of G-protein-mediated Ca2+ sensitization in smooth muscle. 总被引:1,自引:0,他引:1
下载免费PDF全文

M C Gong H Fujihara L A Walker A V Somlyo A P Somlyo 《Molecular biology of the cell》1997,8(2):279-286
Prolonged treatment with guanosine 5'-[gamma-thio]triphosphate (GTP gamma S; 5-16 h, 50 microM) of smooth muscle permeabilized with Staphylococcus aureus alpha-toxin down-regulated (abolished) the acute Ca2+ sensitization of force by GTP gamma S, AIF-4, phenylephrine, and endothelin, but not the response to phorbol dibutyrate or a phosphatase inhibitor, tautomycin. Down-regulation also abolished the GTP gamma S-induced increase in myosin light chain phosphorylation at constant [Ca2+] and was associated with extensive translocation of p21rhoA to the particulate fraction, prevented its immunoprecipitation, and inhibited its ADP ribosylation without affecting the immunodetectable content of G-proteins (p21rhoA, p21ras, G alpha q/11, G alpha i3, and G beta) or protein kinase C (types alpha, beta 1, beta 2, delta, epsilon, eta, theta, and zeta). We conclude that the loss of GTP gamma S- and agonist-induced Ca2+ sensitization through prolonged treatment with GTP gamma S is not due to a decrease in the total content of either trimeric (G alpha q/11, G alpha i3, and G beta) or monomeric (p21rhoA and p21ras) G-protein or protein kinase C but may be related to a structural change of p21rhoA and/or to down-regulation of its (yet to be identified) effector. 相似文献
19.
Perez-Zoghbi JF Sanderson MJ 《American journal of physiology. Lung cellular and molecular physiology》2007,293(4):L1000-L1011
Endothelin-1 (ET) induces increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), Ca(2+) sensitization, and contraction of both bronchiole and pulmonary arteriole smooth muscle cells (SMCs) and may play an important role in the pathophysiology of asthma and pulmonary hypertension. However, because it remains unclear how changes in [Ca(2+)](i) and the Ca(2+) sensitivity regulate SMC contraction, we have studied mouse lung slices with phase-contrast and confocal microscopy to correlate the ET-induced contraction with the changes in [Ca(2+)](i) and Ca(2+) sensitivity of bronchiole and arteriole SMCs. In comparison with acetylcholine (ACh) or serotonin (5-HT), ET induced a stronger and long-lasting contraction of both bronchioles and arterioles. This ET-induced contraction was associated with prominent asynchronous Ca(2+) oscillations that were propagated as Ca(2+) waves along the SMCs. These Ca(2+) oscillations were mediated by cyclic intracellular Ca(2+) release and required external Ca(2+) for their maintenance. Importantly, as the frequency of the Ca(2+) oscillations increased, the extent of contraction increased. ET-induced contraction was also associated with an increase in Ca(2+) sensitivity. In "model" slices in which the [Ca(2+)](i) was constantly maintained at an elevated level by pretreatment of slices with caffeine and ryanodine, the addition of ET increased bronchiole and arteriole contraction. These results indicate that ET-induced contraction of bronchiole and arteriole SMCs is regulated by the frequency of Ca(2+) oscillations and by increasing the sensitivity of the contractile machinery to Ca(2+). 相似文献
20.
The action of ryanodine upon sarcoplasmic reticulum (SR) Ca2+ handling is controversial with evidence for both activation and inhibition of SR Ca2+ release. In this study, the role of the intraluminal SR Ca2+ load was probed as a potential regulator of ryanodine-mediated effects upon SR Ca2+ release. Through dual-wavelength spectroscopy of Ca2+:antipyrylazo III difference absorbance, the intraluminal Ca2+ dependence of ryanodine and Ca(2+)-induced Ca2+ release (CICR) from skeletal SR vesicles was examined. Ryanodine addition after initiation of Ca2+ uptake (a) increased the intraluminal Ca2+ sensitivity of CICR and (b) stimulated spontaneous Ca2+ release with a delayed onset. These ryanodine effects were inversely proportional to the intraluminal Ca2+ load. Ryanodine also inhibited subsequent CICR after reaccumulation of Ca2+ released from the initial CICR. These results provide evidence that ryanodine inhibits transitions between low and high affinity Ca2+ binding states of an intraluminal Ca2+ compartment, possibly calsequestrin. Conformational transitions of calsequestrin may be reciprocally coupled to transitions between open and closed states of the Ca2+ release channel. 相似文献