首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat uterine smooth muscle shows sustained contraction to oxytocin in Ca2+-free medium with EGTA, that is called "Ca-free contraction"(1). Participation of the rise in cytosolic free Ca2+ in this Ca-free contraction was tested. In Ca-free contraction, the cytosolic free Ca2+ level was not changed at all as measured with fura-2. Further, the chelation of cytosolic free Ca2+ with quin-2 did not at all affect Ca-free contraction. These results strongly suggest that Ca-free contraction is not triggered by Ca2+.  相似文献   

2.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway.  相似文献   

3.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

4.
Smooth muscle contraction follows an increase in cytosolic Ca(2+) concentration, activation of myosin light chain kinase, and phosphorylation of the 20-kDa light chain of myosin at Ser(19). Several agonists acting via G protein-coupled receptors elicit a contraction without a change in [Ca(2+)](i) via inhibition of myosin light chain phosphatase and increased myosin phosphorylation. We showed that microcystin (phosphatase inhibitor)-induced contraction of skinned smooth muscle occurred in the absence of Ca(2+) and correlated with phosphorylation of myosin light chain at Ser(19) and Thr(18) by a kinase distinct from myosin light chain kinase. In this study, we identify this kinase as integrin-linked kinase. Chicken gizzard integrin-linked kinase cDNA was cloned, sequenced, expressed in E. coli, and shown to phosphorylate myosin light chain in the absence of Ca(2+) at Ser(19) and Thr(18). Subcellular fractionation revealed two distinct populations of integrin-linked kinase, including a Triton X-100-insoluble component that phosphorylates myosin in a Ca(2+)-independent manner. These results suggest a novel function for integrin-linked kinase in the regulation of smooth muscle contraction via Ca(2+)-independent phosphorylation of myosin, raise the possibility that integrin-linked kinase may also play a role in regulation of nonmuscle motility, and confirm that integrin-linked kinase is indeed a functional protein-serine/threonine kinase.  相似文献   

5.
D Raeburn  I W Rodger  D W Hay  J S Fedan 《Life sciences》1986,38(16):1499-1505
Isolated guinea-pig and rabbit airway smooth muscle preparations lacking cartilage are less able to contract, in response to methacholine, histamine and K+, in the absence of extracellular Ca2+ than cartilage-containing preparations removed from the same animal. Cartilage apparently provides utilizable Ca2+ for contraction of airway smooth muscle. The presence of cartilage, therefore, affects the apparent dependence of the isolated smooth muscle on extracellular Ca2+ for contraction.  相似文献   

6.
The Ca2+ sensitivities of tonic (pulmonary and femoral artery) and phasic (portal vein and ileum) smooth muscles and the effects of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) and norepinephrine on Ca2+ sensitivity of force development and myosin light chain (MLC20) phosphorylation were determined in permeabilized preparations that retained coupled receptors and endogenous calmodulin. The Ca2+ sensitivity of force was higher (approximately 3-fold) in the tonic than in the phasic smooth muscles. The nucleotide specificity of Ca2+ sensitization was: GTP gamma S much greater than GTP greater than ITP much greater than CTP = UTP. Baseline phosphorylation (7% at pCa greater than 8) and maximal phosphorylation (58% at pCa 5.0) were both lower in portal vein than in femoral artery (20 and 97%). Norepinephrine and GTP gamma S increased phosphorylation at constant [Ca2+] (pCa 7.0-6.5). MLC20 phosphorylation induced by norepinephrine was completely inhibited by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S). In portal vein at pCa 5, GTP gamma S increased phosphorylation from 58%, the maximal Ca2(+)-activated value, to 75%, and at pCa greater than 8, from 7 to 13%. In femoral artery at pCa 5, neither phosphorylation (97%) nor force was affected by GTP gamma S, while at pCa greater than 8, GTP gamma S caused an increase in force (16% of maximum) with a borderline increase in MLC20 phosphorylation (from 20 to 27%). MLC20 phosphorylation (up to 100%) was positively correlated with force. The major results support the hypothesis that the G-protein coupled Ca2(+)-sensitizing effect of agonists on force development is secondary to increased MLC20 phosphorylation.  相似文献   

7.
To investigate the mechanism of smooth muscle contraction, the frequency response of the muscle stiffness of single beta-escin permeabilized smooth muscle cells in the relaxed state was studied. Also, the response was continuously monitored for 3 min from the beginning of the exchange of relaxing solution to activating solution, and then at 5-min intervals for up to 20 min. The frequency response (30 Hz bandwidth, 0.33 Hz (or 0.2 Hz) resolution) was calculated from the Fourier-transformed force and length sampled during a 3-s (or 5-s) constant-amplitude length perturbation of increasing-frequency (1-32 Hz) sine waves. In the relaxed state, a large negative phase angle was observed, which suggests the existence of attached energy generating cross-bridges. As the activation progressed, the muscle stiffness and phase angle steadily increased; these increases gradually extended to higher frequencies, and reached a steady state by 100 s after activation or approximately 40 s after stiffness began to increase. The results suggest that a fixed distribution of cross-bridge states was reached after 40 s of Ca2+ activation and the cross-bridge cycling rate did not change during the period of force maintenance.  相似文献   

8.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

9.
Tianeptine is a novel anti-depressant with an efficacy equivalent to that of classical anti-depressants. Additional beneficial effects include neuroprotection, anti-stress and anti-ulcer properties whose molecular mechanisms are still not completely understood but may involve changes in the anti-oxidant defence system. Herein, we have studied the effects of tianeptine on both contractile activity of isolated rat uteri and components of the endogenous anti-oxidative defence system. Tianeptine-induced dose-dependent inhibition of both spontaneous and Ca2+-induced contraction of uterine smooth muscle. The effect was more pronounced in the latter. Tianeptine treatment increased glutathione peroxidase (GSH-Px) and catalase (CAT) activities in spontaneous and Ca2+-stimulated uteri. A significant decrease in glutathione-reductase (GR) activity in both spontaneous and Ca2+-induced uterine contractions after tianeptine treatment indicated a reduction in reduced glutathione and consequently a shift toward a more oxidised state in the treated uteri. In spontaneously contracting uteri, tianeptine caused a decrease in copper-zinc SOD (CuZnSOD) activity. Tianeptine's anti-depressant effects may be accomplished by triggering a cascade of cellular adaptations including inhibition of smooth muscle contractility and an adequate anti-oxidative protection response.  相似文献   

10.
Excitatory agonists can induce significant smooth muscle contraction under constant free Ca(2+) through a mechanism called Ca(2+) sensitization. Considerable evidence suggests that free arachidonic acid plays an important role in mediating agonist-induced Ca(2+)-sensitization; however, the molecular mechanisms responsible for maintaining and regulating free arachidonic acid level are not completely understood. In the current study, we demonstrated that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is expressed in vascular smooth muscle tissues. Inhibition of the endogenous iPLA(2) activity by bromoenol lactone (BEL) decreases basal free arachidonic acid levels and reduces the final free arachidonic acid level after phenylephrine stimulation, without significant effect on the net increase in free arachidonic acid stimulated by phenylephrine. Importantly, BEL treatment diminishes agonist-induced Ca(2+) sensitization of contraction from 49 +/- 3.6 to 12 +/- 1.0% (p < 0.01). In contrast, BEL does not affect agonist-induced diacylglycerol production or contraction induced by Ca(2+), phorbol 12,13-dibutyrate (a protein kinase C activator), or exogenous arachidonic acid. Further, we demonstrate that adenovirus-mediated overexpression of exogenous iPLA(2) in mouse portal vein tissue significantly potentiates serotonin-induced contraction. Our data provide the first evidence that iPLA(2) is required for maintaining basal free arachidonic acid levels and thus is essential for agonist-induced Ca(2+)-sensitization of contraction in vascular smooth muscle.  相似文献   

11.
Vascular smooth muscle cells (VSMC) express three isoforms of the sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) pump; SERCA2b predominates (91%), whereas SERCA2a (6%) and SERCA3 (3%) are present in much smaller amounts. Treatment with thapsigargin (Tg) or A-23187 increased the level of mRNA encoding SERCA2b four- to fivefold; SERCA3 increased about 10-fold, whereas SERCA2a was unchanged. Ca2+ chelation prevented the Tg-induced SERCA2b increase, whereas Ca2+ elevation itself increased SERCA2b expression. These responses were discordant with those of 78-kDa glucose-regulated protein/immunoglobulin-binding protein (grp78/BiP), an endoplasmic reticulum stress-response protein. SERCA2b mRNA elevation was much larger than could be accounted for by the observed increase in message stability. The induction of SERCA2b by Tg did not require protein synthesis, nor was it affected by inhibitors of calcineurin, protein kinase C, Ca2+/calmodulin-dependent protein kinase, or tyrosine protein kinases. Treatment with the nonselective protein kinase inhibitor H-7 prevented Tg-induced SERCA2b expression from occurring, whereas another nonselective inhibitor, staurosporine, was without effect. We conclude that changes in cytosolic Ca2+ control the expression of SERCA2b in VSMC via a mechanism involving a currently uncharacterized, H-7-sensitive but staurosporine-insensitive, protein kinase.  相似文献   

12.
13.
14.
15.
Regulation of aorta smooth muscle contraction by Ca ion requires the collaboration of the 80,000 dalton factor and tropomyosin. A method for preparing pure actin from aorta smooth muscle is described.  相似文献   

16.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

17.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

18.
19.
20.
Certain angina and coronary artery disease forms do not respond to Ca2+ channel blockers, and a role for vasoactive eicosanoids such as PGF2 in Ca2+ antagonist-insensitive coronary vasospasm is suggested; however, the signaling mechanisms are unclear. We investigated whether PGF2-induced coronary smooth muscle contraction is Ca2+ antagonist insensitive and involves activation of a PKC-dependent pathway. We measured contraction in single porcine coronary artery smooth muscle cells and intracellular free Ca2+ concentration ([Ca2+]i) in fura 2-loaded cells and examined cytosolic and particulate fractions for PKC activity and reactivity with isoform-specific PKC antibodies. In Hanks' solution (1 mM Ca2+), PGF2 (10-5 M) caused transient [Ca2+]i increase followed by maintained [Ca2+]i increase and 34% cell contraction. Ca2+ channel blockers verapamil and diltiazem (10-6 M) abolished maintained PGF2-induced [Ca2+]i increase but only partially inhibited PGF2-induced cell contraction to 17%. Verapamil-insensitive PGF2 contraction was inhibited by PKC inhibitors GF-109203X, calphostin C, and -PKC V1-2. PGF2 caused Ca2+-dependent -PKC and Ca2+-independent -PKC translocation from cytosolic to particulate fractions that was inhibited by calphostin C. Verapamil abolished PGF2-induced -but not -PKC translocation. PMA (10-6 M), a direct activator of PKC, caused 21% contraction with no significant [Ca2+]i increase and -PKC translocation that were inhibited by calphostin C but not verapamil. Membrane depolarization by 51 mM KCl, which stimulates Ca2+ influx, caused 36% cell contraction and [Ca2+]i increase that were inhibited by verapamil but not GF-109203X or calphostin C and did not cause - or -PKC translocation. Thus a significant component of PGF2-induced contraction of coronary smooth muscle is Ca2+ antagonist insensitive, involves Ca2+-independent -PKC activation and translocation, and may represent a signaling mechanism of Ca2+ antagonist-resistant coronary vasospasm. eicosanoids; calcium; vascular smooth muscle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号