首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of their potential use as indicators of both present and past environmental conditions, little is known about the diatom communities in the many small water bodies at high altitudes in New Zealand. We sampled benthic diatoms at 20 sites in a typical subalpine mire pool/tarn complex near Arthur’s Pass in South Island, New Zealand in the austral spring 2001. The aims were to characterise the diatom communities, including identification of a possible endemic component, and to investigate relationships with environmental variables. The community at genus level was consistent with the peat-bog diatom flora reported from elsewhere except for the common occurrence of the Tasmania/New Zealand endemic genus Eunophora. At the species level, 27 of the 52 most common taxa appear to correspond to known species from the Northern Hemisphere and are therefore presumed to be cosmopolitan in their distribution. Just two taxa are known from the Southern Hemisphere only, however identification of the remaining common species proved problematic. Analysis using the BIO-ENV procedure of the PRIMER computer program confirmed an expected strong association between diatom community composition and pH, with water conductivity and gilvin also important. Weighted averaging regression and cross-validation using C2 software enabled selection of four diatom species as potentially sensitive indicators of certain pH levels. Neither species of Eunophora showed a strong preference for pH or for any of the other environmental variables measured, indicating that other factors are determining their distributions. The strength of the species–environment relationships found in this small survey suggests good potential for monitoring current conditions and for palaeoecological applications. Extension of the dataset with information from other alpine/subalpine areas is desirable, as is the compilation of a regional diatom identification guide for these habitats.  相似文献   

2.
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.  相似文献   

3.
Two major arguments in favor of using diatoms in water-quality assessments are that their distributions are cosmopolitan and their ecology is well studied. If these assumptions are true, diatom-based monitoring tools could be considered universal and used in any geographic area. Indeed, some diatom metrics based on species indicator values developed in Europe are often used in North America and many other parts of the world. There is considerable evidence, however, that diatom metrics are less useful when applied in a geographic area other than where species relations with environmental characteristics were originally studied to construct the metrics. We used U.S. Geological Survey National Water-Quality Assessment program data to create diatom metrics for monitoring eutrophication, and show here that these metrics provide better assessments in U.S. rivers than similar metrics developed for European inland waters. We also demonstrate that metrics developed by studying diatom–nutrient relationships on the continental-scale can be further refined if combined with regional-scale studies.  相似文献   

4.
Understanding the geographical patterns and divisions of communities is a fundamental step in achieving the sustainable management of ecosystems, especially in deteriorating global and local environments. The idea of geographical division has been applied on all continents but Antarctica, but it has never been rigorously tested for stream ecosystems in China, leaving a gap in knowledge for many basic and applied research questions regarding, for example, diversity patterns, conservation issues or climate change effects. To fill this gap, we aimed to (1) evaluate the geographical divisions of the macroinvertebrate communities in Chinese streams using the self-organizing map (SOM) method and (2) to characterize the distribution patterns in relation to different environmental variables. Macroinvertebrates were collected from 57 relatively clean stream sites covering a south-north gradient along the boundary of the geographic ladder (or altitudinal divide) in China. SOM was used to analyze large-scale biogeographical divisions of the macroinvertebrate communities. The sampling sites were divided into six clusters, distinguishing the samples from northern, central, and southern China. This pattern was also reflected by biotic metrics (abundance, biomass, taxa and sum of Ephemeroptera, Plecoptera, and Trichoptera richness, and diversity). The gradient of environmental variables, particularly water quality variables, was similar between the clusters, with the exceptions of two clusters from southwestern China when considering altitude and one cluster from northern China when considering conductivity and TN. The different clusters from the SOM were associated with indicator species, with clean-water adapted species dominating in southwestern China and pollution tolerant species in northern China. However, there were no significant correlations between environmental variables and biotic metrics. The overall combination of environmental variables and organism data suggests that spatial variation was the main predictor determining the composition of the macroinvertebrate communities on a large-scale, and the trained SOM appeared to be efficient at classifying streams on a broad geographic scale.  相似文献   

5.
Triest  Ludwig  Lung’ayia  Henri  Ndiritu  George  Beyene  Abebe 《Hydrobiologia》2012,695(1):343-360
We investigated epilithic diatoms in rivers draining to the Nyanza Bay in Lake Victoria (Kenya) with the aim of determining environmental gradients in the assemblages and testing the usefulness of diatom metrics from temperate regions. Spatial and temporal variations of assemblages were studied in 12 sites of three rivers. Kibos, Nyando, and Kisat rivers contained 224 diatom taxa collected on seven sampling occasions over 4 years. Species richness showed a marginal decrease downstream and was the lowest at sites with high conductivity and ammonia–nitrogen levels. Two-Way Indicator Species Analysis and Canonical Correspondence Analysis revealed two major groups of river sites. Conductivity, alkalinity, turbidity, dissolved oxygen, and silicate were the most important variables influencing species distribution. Ecological diatom metrics of temperate regions and the Specific Pollution sensitivity Index showed good relationships with environmental variables. Both diatom assemblages and averaged indicator values were strong in predicting sites of ecological deterioration and in differentiating an upstream site of better quality (drinking water supply of Kisumu), thereby confirming epilithic diatoms as suitable water quality indicators in equatorial rivers. The use of metrics initially designed for temperate rivers, however, appears less valuable in good quality tropical rivers because potential indicators are not considered.  相似文献   

6.
Pleistocene glacial–interglacial climatic oscillations greatly shaped the current genetic structure of many species. However, geographic features may influence the impact of climatic cycling. Distinct geographic and environmental characters between northern and southern parts of the eastern Qinghai–Tibetan Plateau (EQTP) facilitate explorations into the impacts of geographic features on species. The northern parts of EQTP contain large areas of marsh, and the environment is rather homogeneous. In contrast, the southern EQTP harbors complex alpine valleys and a much more heterogeneous setting. We evaluate DNA sequence variation from both the mitochondrial and nuclear genomes in Nanorana pleskei, a species endemic to the EQTP. Hypothesis testing on the evolutionary history of N. pleskei indicates that northern populations can disperse freely, but alpine valleys isolate southern populations. Demographic histories between northern and southern populations also differ. Northern populations appear to have experienced population expansions, while southern frogs exhibit a far more stable demographic history. By combining climatic analyses and species' distribution models, our study suggests that geographic and environmental features drive the differences between the northern and southern EQTP.  相似文献   

7.
The aim of this study was to determine the influence of environmental variables on the structure of benthic diatom assemblages, and to propose type assemblages of diatoms characterizing unpolluted headwater streams of Luxembourg. A total of 289 diatom samples were collected in the headwater streams of Luxembourg. At each sampling site, physical and chemical variables were also measured. The relationships between environmental variables and the distribution of the taxa were estimated using univariate and multivariate statistical analyses. On the basis of geology and stream water chemistry, Luxembourg could be separated in two regions. The streams in the schistose northern part of Luxembourg presented a low carbonate hardness (median 3.5° F); the streams in the southern part of Luxembourg presented a high carbonate hardness (median 21.8° F) notably connected to the presence of sandstone and limestone substrata. A Twinspan classification carried out on diatom assemblages defined two groups of samples corresponding to these two regions. The carbonate hardness that is related to the nature of the geological substratum appeared to be the major structuring variable for the assemblage composition. Anthropogenic pollution was a secondary structuring variable for diatom assemblages since each group could be subdivided in subgroups presenting statistically different nutrient and organic matter concentrations. The diatom assemblages of these subgroups were characterised by differences of saprobic and trophic preferences. On the basis of these results, two type assemblages of diatoms are proposed for the unpolluted headwater streams in the two regions of Luxembourg. The presence of these different type assemblages in Luxembourg shows the necessity to adapt diatom bioindication to the different regions of the country.  相似文献   

8.
Diatoms are widely used in stream quality assessment due to their response to the local environment. Diatoms are also influenced by many large-scale processes and so the diatom communities of boreal streams incorporate a strong spatial component at a regional level. What is not properly known yet is whether the variation in diatom communities between regions is larger than the variation in measured environmental variables. We studied the roles of environment and space in accounting for variability in stream diatom communities across four regions in Finland. According to canonical correspondence analysis, geographical coordinates, nutrient concentrations (total N and P), and water conductivity were the most important factors affecting variation in diatom community composition. Of physical factors, depth and current velocity were also significant. According to Mantel tests, both environmental and geographical distances were related to dissimilarity in diatom community composition. Analysis of Similarities indicated that the regional differences in diatom community composition were larger than the regional differences in environmental variables. We also found many indicator species confined to certain regions. Our results suggest that the four study regions differ in their diatom species composition more than in their environmental features and that diatoms are structured not only by the local environment but also by large-scale processes, possibly related to history, climate and dispersal. These results imply that, while diatom species composition reflects well the environmental differences between regions, future bioassessments would benefit from regional stratification. Otherwise, relationships with environmental variables may be masked by trans-regional differences in species pools caused by the large-scale processes.  相似文献   

9.
A biological survey was carried out in 640 stations spread over the Loire-Bretagne National Network (France) between 1996 and 2000. Epilithic diatom inventories were obtained following standard methods. A total of 934 diatom taxa were identified. Common diversity indices (species richness, Shannon’s diversity, equitability, dominance, etc.) were calculated and compared against abiotic factors verify their reliability as biomonitoring metrics. Sampling stations were classified according to their trophic status (TP concentration). Several theoretical predictions about the relationship between community structural parameters and limnological variables were tested. In general, diversity indices exhibited poor linear correlations with environmental factors indicating ecological status. No clear patterns were found concerning species accumulation curves, occurrence-abundance, frequency-abundance and frequency distribution of diatom taxa between different trophic levels, although assemblages from stations with lower TP levels were characterized by relatively high dominances of certain taxa, mainly Achnanthidium minutissimum. In the light of these findings, the use of diatom diversity indices in biological quality surveillance protocols in continental waters is discouraged. Results are compared and discussed with similar studies.  相似文献   

10.
The ability to express different phenotypes can help define species distributions by allowing access to, and exploitation of, new environments. Social insects employ two markedly different reproductive strategies with contrasting cost/benefit characteristics: independent colony foundation (ICF), which is associated with high dispersal range and high risk, and dependent colony foundation (DCF), characterized by low risk but low dispersal. The ant Myrmecina nipponica employs both of these strategies, with the frequency of each apparently varying between populations. We combine molecular data with data on reproductive strategy from different populations of this species throughout Japan to explore how this polymorphism is linked to environmental factors and whether this relationship can help explain the current and historical biogeography of this species. Reproductive strategy exhibited a strong geographic pattern, with ICF predominant in southern populations and DCF more common in northern and southern highland populations. Molecular analyses clearly divided populations into broad geographic regions, with the southern lowland populations basal to (southern highland (+ northern)) populations. Intra‐population polymorphism in colony‐founding strategy was widespread, and polymorphism was reconstructed as the likely ancestral state. The frequency of different strategies was linked with climate, with DCF more common in colder areas. A recent inferred origin to the northern lineage suggests that colonization of northern Japan was a rapid event coincident with warming at the end of the Last Glacial Maxima, likely facilitated by the cold‐adaptive advantages of DCF. We discuss how such polymorphisms could help explain the biogeography of this and other social insects.  相似文献   

11.
Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.  相似文献   

12.
Freshwater diatom biogeography in the Canadian Arctic Archipelago   总被引:7,自引:0,他引:7  
Aim Document the biogeographical distributions of diatoms in the Canadian Arctic in relation to environmental factors. Location The Canadian Arctic Archipelago. Methods Diatoms were extracted from lake sediments and treated using standard methods. Rarefaction‐estimated species richness, diatom concentrations (valves cc?1), and diatom abundance were mapped using a Geographic Information System. The physical and chemical parameters of the lakes were measured. Results A total of 326 taxa from 63 genera were found in 62 lakes of the study area. Up to 85 and as low as eight taxa were identified in any one lake, and rarefaction‐estimated species richness correlated with lake size. Nearby lakes could have greatly different diatom assemblages. Many taxa showed limited distributions. Response surfaces and ordination techniques indicate that a large number of taxa prefer colder regions of the Arctic while the abundance of others was influenced by lake water chemical parameters such as TKN and SiO2. Main conclusions Although many taxa were common and found across the study area, diatom assemblages showed regional differences in the Arctic. Some taxa were not found in either the northern or southern parts of the Archipelago and others were restricted to particular regions. Newly delineated genera showed interpretable geographical patterns and could be related to environmental factors, suggesting that this more natural grouping may enhance our understanding of diatom ecology. Geographical, physical, and chemical factors are needed to explain diatom distributions in the Arctic.  相似文献   

13.
A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species’ range. The broad-headed snake (Hoplocephalus bungaroides) is restricted to a specialized habitat (sandstone outcrops and nearby forests) within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species’ geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species’ distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types) and microhabitat (e.g., frequent use of hollow-bearing trees). Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile.  相似文献   

14.
Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.  相似文献   

15.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

16.
The sibling species of the Echinogammarus berilloni-group are endemic for the Iberian Peninsula and southern France. These species show wide morphological variability with some overlap in their dianostic characters making their distinction difficult. Reroductive isolation and enzmatic jivergence amon allopatric and sympatric populations of four species sharing the same chromosome number has been studied. The results show a clear genetic differentiation of E. longiserosus and E. calvus versus the other two species. However, E. margalefi and E. echinosetosus show no clear genetic differentiation between them, confirming their crose relationship. All four species often coexist in the same drainage system. Isozme analysis was employed to check the hypothesis Of Margalef that sympathy would occur age, long-term phenomena of speciation inside of a given basin with subsequent contact and overlap between the differentiated forms. Electrophoretic data were also used to determine whether one flow among gammarids populations exists. A model proosed by other authors according to which the heterozyosity decreases towards the headwaters foes not fit to the data we have obtained from E. calvus. Thus, populations of this species from sources and springs of the Duero basin show the hiFhest values of mean heterozygosity. The differentiation in this basin can be explained by drift. Migration between populations of different rivers is prevented by natural barriers. The lowest river stretches are without amhipods interrupting the gene flow amon populations. A correction between genetic and geographic fistances among subbasins and basins was found applying a double logarithmic model. A model of migration of E. calvus in the Duero basin is proposed on the basis of allelic frequencies and on the distribution of mean hetero-zygosities.  相似文献   

17.
Life history and population dynamic patterns of Gambusia affinis in southeastern Louisiana varied spatially and temporally in 1990 and 1991, but were consistent with previous reports of this species in the southern regions of its natural range. Several differences exist among populations in different geographic regions within the United States, as reported in the literature, which do not follow a' native v . introduced' dichotomy: (1) brood size decreases and offspring size increases from north to south; (2) large overwintered females in northern areas produce more broods within a season than those in southern populations, while the reverse is true for young-of–year females; (3) minimum size at first reproduction follows a seasonal pattern within populations, but tends to be smaller in southern and larger in northern and Hawaiian populations; (4) synchronous reproduction early in the season is characteristic of northern populations, but does not occur in southern areas; and (5) mosquitofish reproduce year–round in Hawaii, while 'southern' populations within the continental U.S. cease reproduction during winter.  相似文献   

18.
Variation in the spatial structure of communities in terms of species composition (beta diversity) is affected by different ecological processes, such as environmental filtering and dispersal limitation. Large rivers are known as barriers for species dispersal (riverine hypothesis) in tropical regions. However, when organisms are not dispersal limited by geographic barriers, other factors, such as climatic conditions and geographic distance per se, may affect species distribution. In order to investigate the relative contribution of major rivers, climate and geographic distance on Passeriformes beta diversity, we divided Amazonia into 549 grid cells (1° of latitude and longitude) and obtained data of species occurrence, climate and geographic position for each cell. Beta diversity was measured using taxonomic, phylogenetic and functional metrics of composition. The influence of climatic variables, geographic distance and rivers on these metrics was tested using regression analyses. Passerine beta diversity is characterized mainly by the change in species taxonomic identity and in phylogenetic lineages across climatic gradients and over geographic distance. However, species with similar traits are found throughout the entire Amazonia. The size of rivers was proportional to their effect on species composition. However, climate and geographic distance are relatively more important than rivers for Amazonian taxonomic and phylogenetic species composition.  相似文献   

19.
Niche conservatism (NC) describes the scenario in which species retain similar characteristics or traits over time and space, and thus has potentially important implications for understanding their biogeographic distributions. Evidence consistent with NC includes similar niche properties across geographically distant regions. We investigated whether NC was evident in stream diatom morphospecies by modeling species responses to environmental and climatic variables in a set of calibration sites (from the US) and then evaluated the models with test sets (from France, Finland, New Zealand, Antilles and La Réunion). We also examined whether diatom species showed congruency in environmental niche optima and niche breadths between the study regions, and whether species occupancy and functional traits influenced the observed patterns. We used boosted regression tree models with local environmental variables and climatic variables as predictors. We detected low NC in both environmental and climate models and a lack of consistent differences in NC between widely distributed and regionally rare species and among functional groups. For all species, diatom environmental and climatic optima varied clearly between the regions but showed some positive relationships especially for pH and total phosphorus. Diatom niche breadths were only weakly correlated between the US and the other regions. We demonstrated that diatoms showed overall relatively little NC globally, and NC was especially low for climatic variables. Collectively, these findings suggest that there may exist locally adapted lineages within the diatom morphospecies or diatoms possess some adaptation potential for differences in temperature. We argue that in diatoms, environmental and especially climate models may not be transferrable in space globally but need regional diatom data for calibration because species niches seem to differ among geographical regions.  相似文献   

20.
It has been claimed that microbial taxa will not exhibit endemism because their enormous populations remove dispersal as an effective constraint on geographical range. Here we review evidence that challenges this ubiquity hypothesis for the most speciose group of microbial eukaryotes, the diatoms. Detailed taxonomic inventories using fine-grained morphological characteristics, molecular markers, and crossing experiments have revealed that the geographic distribution of diatoms ranges from global to narrow endemic. Records of human-mediated introductions of exotic species further provide a strong indication that geographic dispersal was limiting in the past. Finally, recent studies have revealed that diatom community structure and diversity are influenced by geographical factors independent of environmental conditions. Diatom communities are thus regulated by the same processes that operate in macro-organisms, although possibly to a different degree, implying that dispersal limitation is significant and the endemism observed in isolated areas is real. These results underscore the pressing need to (1) continue research into diatom biology, ecology and the factors driving diatom species diversity and geographic distributions, and (2) protect relatively isolated areas against further introductions of exotic species. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号