首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
宋恒  王长泉 《植物学报》2013,48(4):461-469
茉莉酸是植物伤反应的特异激素, 在植物伤反应中具有核心作用, 其下游调控机制已经比较清晰。在番茄(Lycopersicon esculentum)伤反应中, 系统素和茉莉酸协同启动相关基因的表达, 行使系统性防御功能。拟南芥(Arabidopsis thaliana)信号肽是新发现的一类信号物质, 可以激活植物的初始免疫反应, 但其在伤反应中的作用机制有待进一步研究。脱落酸位于茉莉酸上游, 单独或者协同茉莉酸参与植物的防御反应。另外, 植物中还存在以核糖核酸酶为代表的且不依赖于茉莉酸的伤反应信号转导途径。该文对植物伤反应的防御机制和信号转导做了详细概述。  相似文献   

4.
系统素、茉莉酸在番茄系统伤反应中的作用   总被引:2,自引:0,他引:2  
当植物受到机械损伤或昆虫伤害时,植物体会在受伤部位产生伤信号分子启动防御基因的系统表达,蛋白酶抑制剂基因是防御基因的一典型代表.番茄是研究植物系统伤信号很好的模式植物,目前,三种类型的番茄系统伤信号突变体被鉴定出来,通过对番茄系统伤信号突变体进行功能分析并在它们之间进行相互嫁接实验,研究结果表明系统素和茉莉酸通过同一信号通路来激活防御基因的系统表达.系统素(或它的前体原系统素)在受伤部位激活茉莉酸的合成,使之达到系统反应的水平,应对外来伤害;茉莉酸或其衍生物是重要的系统伤信号分子,它诱导伤防御基因的系统表达.植物的系统伤反应可比做动物的炎症反应,它们之间有许多相似之处.  相似文献   

5.
6.
7.
Polyamines are small ubiquitous molecules that have been involved in nearly all developmental processes, including the stress response. Nevertheless, no direct evidence of a role of polyamines in the wound response has been described. We have studied the expression of genes involved in polyamine biosynthesis in response to mechanical injury. An increase in the expression of the arginine decarboxylase 2 (ADC2) gene in response to mechanical wounding and methyl jasmonate (JA) treatment in Arabidopsis was detected by using DNA microarray and RNA gel-blot analysis. No induction was observed for the ADC1 gene or other genes coding for spermidine and spermine synthases, suggesting that ADC2 is the only gene of polyamine biosynthesis involved in the wounding response mediated by JA. A transient increase in the level of free putrescine followed the increase in the mRNA level for ADC2. A decrease in the level of free spermine, coincident with the increase in putrescine after wounding, was also observed. Abscisic acid effected a strong induction on ADC2 expression and had no effect on ADC1 expression. Wound-induction of ADC2 mRNA was not prevented in the JA-insensitive coi1 mutant. The different pattern of expression of ADC2 gene in wild-type and coi1 mutant might be due to the dual regulation of ADC2 by abscisic acid and JA signaling pathways. This is the first direct evidence of a function of polyamines in the wound-response, and it opens a new aspect of polyamines in plant biology.  相似文献   

8.
Impaired induction of the jasmonate pathway in the rice mutant hebiba   总被引:1,自引:0,他引:1  
The elongation of rice (Oryza sativa) coleoptiles is inhibited by light, and this photoinhibition was used to screen for mutants with impaired light response. In one of the isolated mutants, hebiba, coleoptile elongation was stimulated in the presence of red light, but inhibited in the dark. Light responses of endogenous indolyl-3-acetic acid and abscisic acid were identical between the wild type and the mutant. In contrast, the wild type showed a dramatic increase of jasmonate heralded by corresponding increases in the content of its precursor o-phytodienoic acid, whereas both compounds were not detectable in the mutant. The jasmonate response to wounding was also blocked in the mutant. The mutant phenotype was rescued by addition of exogenous methyl jasmonate and o-phytodienoic acid. Moreover, the expression of O. sativa 12-oxophytodienoic acid reductase, an early gene of jasmonic acid-synthesis, is induced by red light in the wild type, but not in the mutant. This evidence suggests a novel role for jasmonates in the light response of growth, and we discuss a cross-talk between jasmonate and auxin signaling. In addition, hebiba represents the first rice mutant in which the induction of the jasmonate pathway is impaired providing a valuable tool to study the role of jasmonates in Graminean development.  相似文献   

9.
10.
11.
12.
13.
The Arabidopsis mutant cad1 (constitutively activated cell death 1) shows a phenotype that mimics hypersensitive response (HR)-like cell death. The CAD1 gene, which encodes a protein containing a domain with significant homology to the MACPF (membrane attach complex and perforin) domain of complement components and perforin, is likely to control plant immunity negatively and has a W-box cis-element in its promoter region. We found that expression of the CAD1 gene and other W-box containing genes, such as NPR1 and PR2, was promoted by salicylic acid (SA) and benzothiadiazole (BTH) as a SA agonist. The CAD1 gene was also stimulated by a purified chitin oligosaccharide elicitor (degree of polymerization = 8). This latter control was not under SA, because CAD1 expression was not suppressed in 35SnahG transgenic plants, which are unable to accumulate SA. These expression profiles were confirmed by promoter analysis using pCAD1::GUS transgenic plants. The CAD1 expression promoted by BTH and the chitin elicitor was not suppressed in the npr1 mutant, which is insensitive to SA signaling. These results indicate that the CAD1 gene is regulated by two distinct pathways involving SA and a chitin elicitor: viz., SA signaling mediated through an NPR1-independent pathway, and chitin elicitor signaling, through an SA-independent pathway. Three CAD1 homologs that have multiple W-box elements in their promoters were also found to be under the control of SA.  相似文献   

14.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

15.
G A Howe  C A Ryan 《Genetics》1999,153(3):1411-1421
In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2).  相似文献   

16.
17.
18.
Jasmonates have been proposed to be signaling intermediates in the wound and/or elicitor-activated expression of plant defense genes. We used parsley (Petroselinum crispum) cell cultures and transgenic tobacco (Nicotiana tabacum) plants expressing 4CL1-GUS gene fusions to investigate the potential role played by jasmonates in mediating the wound and/or elicitor activation of phenylpropanoid and other defense-related genes. Jasmonates and [alpha]-linolenic acid strongly induced the expression of 4CL in a dose-dependent manner in parsley cells; methyl jasmonate also activated the coordinate expression of other phenylpropanoid genes and the accumulation of furanocoumarin phytoalexins. However, the response of the cells to optimal methyl jasmonate concentrations was distinct quantitatively and qualitatively from the response of elicitor-treated cells. In transgenic tobacco wound-inducible tobacco 4CL genes and a 4CL1 promoter-GUS transgene were responsive to jasmonates and [alpha]-linolenic acid in a dose-dependent manner. Pre-treatment of parsley cells or tobacco leaves with a lipoxygenase inhibitor reduced their responsiveness to the elicitor and to wounding. These results show that the elicitor response in parsley cells can be partially mimicked by jasmonate treatment, which supports a role for jasmonates in mediating wound-induced expression of 4CL and other phenylpropanoid genes.  相似文献   

19.
Khanna R  Kikis EA  Quail PH 《Plant physiology》2003,133(4):1530-1538
To define the functions of genes previously identified by expression profiling as being rapidly light induced under phytochrome (phy) control, we are investigating the seedling de-etiolation phenotypes of mutants carrying T-DNA insertional disruptions at these loci. Mutants at one such locus displayed reduced responsiveness to continuous red, but not continuous far-red light, suggesting a role in phyB signaling but not phyA signaling. Consistent with such a role, expression of this gene is induced by continuous red light in wild-type seedlings, but the level of induction is strongly reduced in phyB-null mutants. The locus encodes a novel protein that we show localizes to the nucleus, thus suggesting a function in light-regulated gene expression. Recently, this locus was identified as EARLY FLOWERING 4, a gene implicated in floral induction and regulating the expression of the gene CIRCADIAN CLOCK-ASSOCIATED 1. Together with these previous data, our findings suggest that EARLY FLOWERING 4 functions as a signaling intermediate in phy-regulated gene expression involved in promotion of seedling de-etiolation, circadian clock function, and photoperiod perception.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号