首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A transient rise in the PM-ATPase activity was observed at the time of commitment of Candida albicans cells to either bud or hyphal formation. However, the changes in PM-ATPase activity did not correlate with the level of enzyme protein detected by ELISA. It was found to be fairly constant during differentiation, implying that there was no de novo synthesis of the protein. Post-translational modification(s) of enzyme protein is suggested to account for variation in PM-ATPase activity during morphogenesis.  相似文献   

2.
Candida albicans is an opportunistic pathogen. Its proliferation in human hosts is believed to be controlled by immunologic mechanisms. The plasma membrane of the fungus possesses an H(+)-ATPase (PM-ATPase) which actively extrudes protons to generate an electrochemical gradient which is used in co-transport of nutrients. This ATPase is associated with the growth, dimorphism and pathogenicity of the fungus. The physiological concentration of phosphocreatine (PCr) is 20-35 mM in skeletal muscles. H(+)-extrusion in Candida cells was strongly inhibited by PCr; 44% at 20 mM and 69% at 40 mM. H(+)-extrusion was stimulated 6.2-fold in the presence of 10 mM glucose. This glucose stimulated extrusion was inhibited significantly by PCr; 36% at 20 mM and 53% at 40 mM. The intracellular pH pattern of cells destined to differentiate was greatly altered in the presence of PCr. Evagination time for control cells was between 90-120 min. PCr, delayed dimorphism, reduced the population of cells differentiating to hyphae and also reduced the length of hyphae after each time interval. Only 60% differentiation was observed with 10 mM PCr and 40% for higher PCr concentration even after 210 min. Direct interaction of PM-ATPase and PCr has been demonstrated by difference spectrum measurement employing stopped flow spectrophotometer. It can be concluded that PCr may be playing a significant role in checking growth and pathogenesis of C. albicans.  相似文献   

3.
We isolated and sequenced a clone for Candida albicans enolase from a C. albicans cDNA library by using molecular genetic techniques. The 1.4-kbp cDNA encoded one long open reading frame of 440 amino acids which was 87 and 75% similar to predicted enolases of Saccharomyces cerevisiae and enolases from other organisms, respectively. The cDNA included the entire coding region and predicted a protein of molecular weight 47,178. The codon usage was highly biased and similar to that found for the highly expressed EF-1 alpha proteins of C. albicans. Northern (RNA) blot analysis showed that the enolase cDNA hybridized to an abundant C. albicans mRNA of 1.5 kb present in both yeast and hyphal growth forms. The polypeptide product of the cloned cDNA, which was purified as a recombinant protein fused to glutathione S-transferase, had enolase enzymatic activity and inhibited radioimmunoprecipitation of a single C. albicans protein of molecular weight 47,000. Analysis of the predicted C. albicans enolase showed strong conservation in regions of alpha helices, beta sheets, and beta turns, as determined by comparison with the crystal structure of apo-enolase A of S. cerevisiae. The lack of cysteine residues and a two-amino-acid insertion in the main domain differentiated C. albicans enolase from S. cerevisiae enolase. Immunofluorescence of whole C. albicans cells by using a mouse antiserum generated against the purified fusion protein showed that enolase is not located on the surface of C. albicans. Recombinant C. albicans enolase will be useful in understanding the pathogenesis and host immune response in disseminated candidiasis, since enolase is an immunodominant antigen which circulates during disseminated infections.  相似文献   

4.
Monoclonal antibody 3D9.3 (MAb 3D9.3) reacts with the surface of Candida albicans germ tubes and recognizes a protein epitope. We used a two-step chromatography procedure to purify and identify the antigen (3D9) from C. albicans strain 66396 germ tubes. MAb 3D9.3 recognized two intense protein bands at 140 and 180 kDa. A comparative analysis between theoretical and experimental mass spectrum peaks showed that both bands corresponded to Als3. This conclusion was supported by lack of reactivity between MAb 3D9.3 and an als3 Δ /als3 Δ mutant strain, and the fact that an immunoglobulin preparation enriched for Als3 specificity recognized the purified 3D9 antigen. PCR demonstrated that C. albicans strain 66396 has two different-sized ALS3 alleles that correspond to the two purified protein bands. Strain- and species-specificity of the 3D9 epitope were studied with various C. albicans strains and Candida species, such as closely related Candida dubliniensis . The 3D9 epitope was detected only in C. albicans , demonstrating the utility of MAb 3D9.3 for differentiation between C. albicans and C. dubliniensis . Adhesion assays demonstrated that MAb 3D9.3 blocks adhesion of C. albicans germ tubes to human buccal epithelial cells and vascular endothelial cells.  相似文献   

5.
The characteristics of root plasma membrane ATPase (PM-ATPase) of "Weiyou 49", a K+ -deficit tolerant rice (Oryza sativa L. ) variety and of "Yuanyou 1", a K+ -deficit non-tolerant rice variety, had some similarities:Their optimum pH value were both about 6.0; Their activities reached the maximum at ATP concentration of 3 mmol/L; Km was 0.85 mmol/L and external K+ stimulated their activities. However, when [K+ ] was less than or equal to 50 mmol/L in the medium, the increasing of K + stimulated the activity of the PM-ATPase of "Weiyou 49" much more than that of "Yuanyou 1". When [K+ ] was between 100 to 200 mmol/L, the difference of the PM-AT- Pase activities decreased between the two rice varieties caused by K + stimulation. The basic H + extrusion of the two varieties had no apparent difference, but the H + extrusion stimulated by K + was different. The H+ extrusion of "Weiyou 49" was relatively more sensitive to external K+ . The experiment using inhibitors showed that there were close relationship between the PM-ATPase activi- ties stimulated by K+ and K+ uptake in the two varieties. The inhibition of PM-ATPase activity and H+ -extrusion stimulated by K+ reduced the K+ uptake of the root segments in both varieties. So the possible reason for "Weiyou 49" growing well in the low external K+ was that its PM-ATPase and H+ extrusion was more sensitive to external K+ , especially when [K+ ] was low.  相似文献   

6.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.  相似文献   

7.
A lysophospholipase-transacylase was purified to homogeneity from the culture broth of Candida albicans by ammonium sulfate precipitation and chromatographs on DEAE-cellulose, Ultrogel AcA-44, first Mono Q, hydroxyapatite, TSKgel-3000 and second Mono Q columns. The purified protein was a single band (Mr 41,000) as inferred by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a specific activity of 78 mumol/min per mg protein for fatty acid release and 320 mumol/min per mg protein for phosphatidylcholine formation. Fatty acid release obeyed Michaelis-Menten kinetics and the apparent Km was 76 microM of 1-palmitoyl-sn-glycero-3-phosphatidylcholine, but Lineweaver-Burk plots of transacylase activity was parabolic. The ratio of hydrolase to transacylase activity of the purified enzyme was varied depending upon the concentration of lysophosphatidylcholine. Transacylation was prominent at high concentration of substrate and the ratio of hydrolase to transacylase was 0.24. Low concentration of palmitoylcarnitine (50 microM) inhibited markedly phosphatidylcholine formation but stimulated fatty acid release. The degree of esterification of 1-acyllysophosphatidylcholine was altered with mixtures of different molecular species of substrate, demonstrating acyl chain selectivity in the transfer process. These results suggest that C. albicans lysophospholipase-transacylase is different from the corresponding mammalian enzymes in enzymatic properties.  相似文献   

8.
9.
ABSTRACT: BACKGROUND: Because Candida albicans is resistant to several antifungal antibiotics, there is a need to identify other less toxic natural products, particularly antimicrobial proteins, peptides or bacteriocin like inhibitory substances. An attempt has been made to purify and characterise an anti-Candida compound produced by Enterococcus faecalis. RESULTS: An anti-Candida protein (ACP) produced by E. faecalis active against 8 C. albicans strains was characterised and partially purified. The ACP showed a broad-spectrum activity against multidrug resistant C. albicans MTCC 183, MTCC 7315, MTCC 3958, NCIM 3557, NCIM 3471 and DI. It was completely inactivated by treatment with proteinase K and partially by pronase E. The ACP retained biological stability after heat-treatment at 90 degreesC for 20 min, maintained activity over a pH range 6-10, and remained active after treatment with alpha-amylase, lipase, organic solvents, and detergents. The antimicrobial activity of the E. faecalis strain was found exclusively in the extracellular filtrate produced in the late logarithmic growth phase. The highest activity (1600 AU mL-1) against C. albicans MTCC 183 was recorded at 48 h of incubation, and activity decreased thereafter. The peptide showed very low haemagglutination and hemolytic activities against human red blood cells. The antimicrobial substance was purified by salt-fractionation and chromatography. Partially purified ACP had a molecular weight of approximately 43 KDa in tricine-PAGE analysis. The 12 amino acid N terminal sequence was obtained by Edman degradation. The peptide was de novo sequenced by ESI-MS, and the deduced combined sequence when compared to other bacteriocins and antimicrobial peptide had no significant sequence similarity. CONCLUSIONS: The inhibitory activity of the test strain is due to the synthesis of an antimicrobial protein. To our knowledge, this is the first report on the isolation of a promising non-haemolytic anti- Candida protein from E. faecalis that might be used to treat candidiasis especially in immunocompromised patients.  相似文献   

10.
The thymidylate synthase (TS) gene was isolated from a genomic Candida albicans library by functional complementation of a Saccharomyces cerevisiae strain deficient in TS. The gene was localized on a 4-kilobase HindIII DNA fragment and was shown to be expressed in a Thy- strain of Escherichia coli. The nucleotide sequence of the TS gene predicted a protein of 315 amino acids with a molecular weight of 36,027. The gene was cloned into a T7 expression vector in E. coli, allowing purification of large amounts of C. albicans TS. It was also purified from a wild-type C. albicans strain. Comparison of several enzyme properties including analysis of amino-terminal amino acid sequences showed the native and cloned C. albicans TS to be the same.  相似文献   

11.
Candida albicans is a common opportunistic fungal pathogen and is the leading cause of invasive fungal disease in immunocompromised individuals. The induction of cell-mediated immunity to C. albicans is of critical importance in host defense and the prime task of cells of the innate immune system. We previously demonstrated that the integrin alpha(M)beta(2) (CD11b/CD18) is the major leukocyte receptor involved in C. albicans recognition, mediating both adhesive and migratory responses to the fungus. In the present study, we demonstrate that various C. albicans strains release a protease-sensitive activity into their conditioned medium that supports alpha(M)beta(2)-mediated cell adhesion and migration. The isolation and characterization of this protein was undertaken by two independent approaches: 1) immunoaffinity purification on a mAb raised to conditioned medium which blocked alpha(M)beta(2)-dependent adhesion and migration; and 2) affinity chromatography on purified alpha(M)beta(2). Each approach led to the isolation of the same protein, which was unequivocally identified as pH-regulated Ag 1 (Pra1p), based on mass spectrometry and amino acid sequence analyses. C. albicans mutant strains lacking Pra1p were unable to support leukocyte adhesion or migration. In a neutrophil-mediated fungal killing assay, such mutant strains were resistant to killing and/or phagocytosis. Addition of purified Pra1p or reagents that block alpha(M)beta(2) function prevented killing of Pra1p-expressing but not Pra1p-deficient strains of C. albicans. Together, these data indicate that Pra1p is a ligand of alpha(M)beta(2) on C. albicans and that the soluble form of Pra1p may assist the fungus in escaping host surveillance.  相似文献   

12.
N-Acetyl-D-glucosamine-induced germ tube formation in Candida albicans at 37 degrees C was accompanied by an increase in the rate of protein phosphorylation. The calmodulin antagonist trifluoperazine and the Ca2+ ionophore A23187, which inhibited germ tube formation, also reduced the rate of phosphorylation. The rate of phosphorylation was also reduced when cells were incubated at 25 degrees C, which favoured yeast-phase growth. Two-dimensional SDS-PAGE analysis of phosphoproteins from germ-tube-forming and yeast cells revealed two germ-tube-specific and three yeast-specific phosphoproteins. Germ tubes and hyphae had more calmodulin activity than yeast cells, irrespective of the germ-tube-inducing condition used. As a first step towards understanding the inhibitory effect of trifluoperazine on germ tube formation, calmodulin from C. albicans was purified to homogeneity. It was heat stable, and displayed a pronounced Ca2(+)-induced shift in electrophoretic mobility.  相似文献   

13.
Abstract In a previous work, Marot-Leblond et al. identified a Candida albicans germ tube-specific antigen by the use of a monoclonal antibody (mAb 3D9.3). In the present report, we used a two-step procedure to obtain a purified preparation of this antigen from a Zymolyase extract of Candida albicans germ tubes. The extract was first fractionated by gel filtration chromatography. The immunoreactive fractions were pooled, and the 3D9.3 antigen was further purified by hydrophobic interaction chromatography using a Phenyl-superose column. Analysis by SDS-PAGE, immunoblotting and Concanavalin A staining, revealed a single, polydisperse band ranging from 110 to 170 kDa. The antigen was purified 126-fold by protein content and 16.4-fold by carbohydrate content. Recovery of the antigen was 6.8% following the two-step purification.  相似文献   

14.
An acid phosphomonoesterase was purified 87-fold with a 4% recovery from disintegrated cells of Candida albicans by four stages of column chromatography. The purified enzyme was homogeneous by ultracentrifugal, electrophoretic, and immunological analyses. The fully corrected sedimentation coefficient, s(20,w), was calculated to be 5.51s. Molecular weight estimated from ultracentrifugal data was 124.3 x 10(3), from gel chromatography was 115 x 10(3), and from acrylamide gel electrophoretic data was 131 x 10(3). Buoyant density in sucrose was 1.15 g/cm(3). The enzyme was a mannoprotein with a hexose to protein ratio of 7: 1. The Michaelis constant of the enzyme was 3.3 x 10(-4) M for p-nitrophenyl phosphate as substrate, and the pH optimum was 4.5. The enzyme was competitively inhibited by inorganic phosphate (K(i) = 10(-4) M) and by arsenate (K(i) = 0.5 x 10(-4) M). A wide range of inorganic cations and anions did not affect enzyme activity, but Hg(2+), Cd(2+), and Cu(2+) were inhibitory. F(-) was also inhibitory at low concentrations, but the effect was reversed at higher concentrations. Phosphatase activity was completely destroyed by exposure of the enzyme to 70 C for 12 min, but was destroyed only slowly by proteolytic hydrolysis. The purified glycoprotein enzyme gave a line of identity with the "b" antigen of crude C. albicans homogenates in immunodiffusion and immunoelectrophoresis tests with sera from rabbits inoculated with intact C. albicans cells and from humans with proven candidiasis. Preliminary evidence suggests that the mannan and not the protein portion of the enzyme molecule is responsible for this antigenicity.  相似文献   

15.
16.
The Aloe protein of 14 kDa from the Aloe vera leaf gel was isolated by an ion exchange chromatography using DEAE-cellulose and CM-cellulose column. The purified Aloe protein exhibited a potent anti-fungal activity against Candida paraprilosis, Candida krusei and Candida albicans. In addition, the purified Aloe protein also showed an anti-inflammatory property against pure lipoxygenase and cyclooxygenase-2 with 84% and 73% inhibition, respectively, and was verified by binding with these proteins by real time method by the phenomenon of surface plasmon resonance. This Aloe protein is a novel protein possessing antifungal and anti-inflammatory properties and thus sets a platform to be used as a medicinal plant product.  相似文献   

17.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) has recently been identified as a target for antiviral and antifungal therapy. Candida albicans is a dimorphic, asexual yeast that is a major cause of systemic fungal infections in immunosuppressed humans. Metabolic labeling studies indicate that C. albicans synthesizes one principal 20-kDa N-myristoyl-protein. The single copy C. albicans NMT gene (ca-NMT1) was isolated and encodes a 451-amino acid protein that has 55% identity with Saccharomyces cerevisiae NMT. C. albicans NMT1 is able to complement the lethal phenotype of S. cerevisiae nmt1 null mutants by directing efficient acylation of the approximately 12 endogenous N-myristoylproteins produced by S. cerevisiae. C. albicans NMT was produced in Escherichia coli, a prokaryote with no endogenous NMT activity. In vitro studies of purified E. coli-derived S. cerevisiae and C. albicans NMTs revealed species-specific differences in the kinetic properties of synthetic octapeptide substrates derived from known N-myristoylproteins. Together these data indicate that C. albicans and S. cerevisiae NMTs have similar yet distinct substrate specificities which may be of therapeutic significance.  相似文献   

18.
Zeamatin is an antifungal protein isolated from the seeds of Zea mays. A practical process for isolation and purification was developed to increase recovery yields for future testing of zeamatin as a novel therapeutic drug. Zeamatin was extracted with buffer from corn meal milled to flour. Solids were removed from the extract using pressure filtration, and zeamatin was purified using two separate reverse-phase chromatography steps. Determination of the amino-terminal amino acid sequence, Western blotting using anti-zeamatin antibody, and activity against Candida albicans were used to confirm that the purified protein was zeamatin. From 5 kg of corn meal, approximately 110 mg of zeamatin was purified to apparent homogeneity.  相似文献   

19.
Binding of plasma proteins to Candida species in vitro   总被引:10,自引:0,他引:10  
The ability of purified human albumin, fibrinogen and transferrin to bind to Candida species was measured by immunofluorescence. The proteins all bound with high avidity to germ-tubes formed by Candida albicans, but did not bind to blastospores of C. albicans or other pathogenic Candida species, not even to parent blastospores bearing germ-tubes. The extent of binding of the proteins to C. albicans germ-tubes varied between growth media and from germ-tube to germ-tube. Strains of C. albicans that did not form germ-tubes were incapable of binding any of the proteins. There was evidence that purified fibrinogen bound to germ-tubes with higher avidity than albumin and transferrin. When germ-tubes were treated with whole human plasma or serum, indirect immunofluorescence revealed that proteins were bound all over the surface of C. albicans blastospore-germ-tube units, indicating behaviour different from that seen with the purified proteins tested alone or in mixtures. C. albicans cells grown in the presence of azole antifungal agents bound purified plasma proteins in the same way as cells untreated with the drugs. The results of this study suggest that binding of host proteins to the surface of C. albicans may not be a property related directly to virulence of the fungus in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号