首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Vertical distribution of zooplankton in the upper1000 m was studied from the south-east Arabian Sea in orderto determine the variations in zooplankton at different depths.The distribution and migration patterns of calanoid copepodspecies were given special attention. The mean zooplankton standingstock in the upper 1000 m was 2.1 g dry Wt m–2, of which97.7% was concentrated in the upper 400 m. Herbivores were generallymore abundant at all depths, but did not predominate. An increasein zooplankton at night occurred in the upper 200 m, as wellas at the 600–1000 m stratum. The maximum diversity ofcalanoid copepods also coincided with these two depths. Basedon vertical ranges, the calanoid copepod species were assignedto three groups: (i) species occurring predominantly in theepipelagic layer and forming the bulk of the calanoids; (ii)relatively sparser deeper living species confined below 200m; and (iii) species occurring throughout the water column.Some amount of vertical niche separation among congeneric specieswas indicated. While some species showed active migration, agood number of species were non- migratory.  相似文献   

2.
Summary Zooplankton was sampled with RMT (1+8) gear on a synoptic grid of stations centred on South Georgia during the austral summer (November/December 1981) and winter (July/August 1983). This initial paper compares zooplankton biomass, vertical distribution and species composition from RMT 1 catches in the oceanic portion of the grid (water depth greater than 2000 m) during the two surveys. In the winter survey, mean zooplankton biomass within the top 1000 m of the water column was 68% of its summer level. This drop was largely due to a decrease in abundance of krill (Euphausia superba), although biomass of copepods and remaining zooplankton also decreased. Copepods averaged 48% of total biomass in summer and winter, but outnumbered all other taxa put together by a factor of 10. Antarctic epipelagic species predominated around the island in the summer survey but tended to be replaced by sub-Antarctic or cosmopolitan species during the winter survey. The majority of zooplankton also showed a downwards seasonal migration out of the top 250 m layer in winter. However, several epipelagic species, including E. superba, did not migrate, and these tended to have the largest summer-winter differences in overall abundance. These trends were attributed to variation in the position of the Polar Front, which lay north of the island during the summer survey but lay across the survey area in winter, resulting in a greater influence of sub-Antarctic water and the displacement of Antarctic species.  相似文献   

3.
The vertical distribution of zooplankton in the upper 700 mof the water column was investigated across the Almeria–Oranfront (Alboran Sea) during winter 1997/98 (Almofront 2 cruise).Eight sites corresponding to three hydrodynamic structures (theAtlantic jet, an anticyclonic gyre and the surrounding Mediterraneanwaters) were explored, by day and at night, using multiple-netsampling. Results are presented for the major species of copepods(>500 µm), macroplankton and microplankton. Speciesinhabiting the surface layer or occupying it at night extendeddeeper in the gyre. On the other hand, mesopelagic species (e.g.Pleuromamma borealis, Pleuromamma abdominalis, Euphausia krohniand Cyclothone braueri) were found to live deeper, at leastby day for the migrants, in the Mediterranean waters comparedwith the two other structures. These changes in preferentialdepths across the front are discussed in relation to environmentalfeatures, such as light level, abundance of food and mixed layerdepth. This study also documented the vertical distributionof some overwintering copepod species (Calanus helgolandicus,Eucalanus hyalinus and Eucalanus monachus).  相似文献   

4.
The diurnal vertical distribution of a large number of speciesof zooplankton, icbthyoplankton and micronekton were determinedin the top 150 m in three locations in the Shelf Water, on theNova Scotia Shelf, and Slope and on Georges Bank during springand fall periods. Species were categorized as to their trophiclevel and their type of diurnal migration behaviour. The influenceof temperature, salinity, and water density on the diurnal verticaldistribution of the species was examined. Temperature was foundto have the greatest influence on the distribution of the largestnumber of species. Diurnal migration behavior of the same speciesin Shelf and Slope water and at different times of the yearwas examined. Results showed that species changed their behaviorin the two water masses, while some species changed their migrationbehavior at different times of the year. During the night inApril the most abundant copepod species, Calanus finmarchicus,making up about 80% of the biomass, was found concentrated abovethe thermocline and the main chlorophyll layer. The majorityof the less abundant species of copepods were found below thethermocline and the chlorophyll layer. At night in August thetwo most abundant copepod species, Centropoger typicus and Paracalanusparvus, making up at least 80% of the zooplankton biomass, werealso concentrated above the thermocline and the main chlorophyllLayer. Three species of copepods were concentrated at the depthof the main chlorophyll layer and two species were concentratedbelow the chlorophyll layer and thermocline. The vertical distributionof other zooplankton and ichthyoplankton species was examinedin relation to the thermocline and chlorophyll layer. Relationshipsbetween concentrations of six species of fish larvae and allspecies of copepods in the same samples showed a general increasein the numbers of larvae m–3 as the numbers of copepodsm–3 increased in a range of 500–4000 m–3.However, the concentration of Merluccius bilinearis decreasedas the concentration of copepods exceeded 4000 m–3 suggestingthat high concentrations of copepods may not be a favourableenvironment for the larvae.  相似文献   

5.
Zooplankton abundance and biomass were determined during January 1990 at two stations to the north-west of South Georgia using a Longhurst Hardy Plankton Recorder (LHPR). At both shelf and oceanic station sites, zooplankton biomass, (excluding Euphausia superba), was found to be ca. 13 g dry mass m–2. Copepods and small euphausiids dominated the catches. These estimates are over 4 times higher than values generally reported for the Southern Ocean and may reflect firstly, the high productivity of the study area, secondly, the time of year, summer, when biomass for many species is maximal, and thirdly, the high sampling efficiency of the LHPR. Principal components analysis disclosed similarities and differences between adjacent depth strata in terms of abundance, biomass and species composition. At both stations most variability occurred in the mixed layer (0–60 m) and thermocline (60–120 m) with depth horizons below this being more homogeneous. Diel migrations were observed for most taxa with abundance increasing in the mixed layer at night. At the oceanic station, species and higher taxa belonging to the mesopelagic community were generally well spread throughout this domain and, with the exception of Pleuromamma robusta and Metridia curticauda, showed little evidence of migration. The grazing impact of the epipelagic community (copepods and small euphausiids) was estimated to remove 3–4% of the microbial standing stock day–1 and a conservative 25% and 56% of daily primary production at the oceanic and shelf stations respectively.  相似文献   

6.
Mesozooplankton from the Levantine Basin, Eastern Mediterranean,were analysed for composition and vertical distribution fromthe surface to 4000 m, with special emphasis on calanoid copepods.Copepods were dominant, ostracods and chaetognaths ranked next.Zooplankton abundance and biomass were highest in the top 100m layer. A secondary concentration maximum was between 450 and750 m. The exponential decrease of zooplankton with depth wasstronger than in the open ocean, but less strong than in theRed Sea. Similarly to the Red Sea, three genera among calanoidcopepods were predominant in the deep sea. As with the WesternMediterranean, but different from the Red Sea, populations ofmesopelagic and one bathypelagic species were found to occurwell below 1250 m to depths of at least 3000 m. Similarly toboth seas, long-range vertical migrators were rare, those presentmainly belonging to the genus Pleuromamma, and diel migrationswere restricted to the upper 600 or 1000 m. Due to the hightemperatures in the deep water bodies of the Levantine and RedSeas, the decomposition of sedimentary particles is assumedto be accelerated. This prevents much detritus from reachingthe sea floor which may explain the anomalous low abundancesof deep-sea zooplankton and benthos. Though the similaritiesto the Red Sea seem to be strong, the Levantine Sea is likelyto hold an intermediate position between the open ocean andthe Western Mediterranean on one side and the Red Sea on theother side.  相似文献   

7.
Summer-winter differences in copepod distribution around South Georgia   总被引:2,自引:0,他引:2  
Atkinson  Angus  Ward  Peter 《Hydrobiologia》1988,167(1):325-334
Zooplankton was sampled on a synoptic grid of stations centered on South Georgia during the austral summer of 1981/82 and winter 1983. Within the top 1000 m layer at oceanic stations, copepods averaged 48% of the total biomass in summer and winter, but outnumbered all other taxa combined by a factor of 10. In winter the mean zooplankton biomass within the top 1000 m was 68% of its summer level. Copepod biomass was 77% of its summer level. During both surveys, the large and abundant Calanoides acutus and Rhincalanus gigas dominated the copepod biomass and, with several other species, showed a marked downwards seasonal migration out of the top 250 m layer in winter. Antarctic epipelagic species predominated around the island during summer but tended to be replaced by sub-Antarctic and cosmopolitan species during the winter. Factors likely to influence our estimates of overall copepods abundance and changes in species composition include seasonality of reproduction, net mesh selection and differences in water mass distribution. The observed trends are attributed mainly to variation in the position of the Polar Front which lay north of the island during the summer survey yet lay across the survey area in winter. This resulted in a greater influence of sub-Antarctic water around South Georgia in winter and the displacement of Antarctic species.  相似文献   

8.
Fine-scale vertical (5 – 40 m) and horizontal (50 –500 m) patterns of temperature, chlorophyll and abundance ofzooplankton species were sampled with a pump filtration systemin the surface waters offshore of San Diego in May and October,1978. Intense and consistent patterns were most apparent invertical profiles. Herbivorous zooplankton were more consistentlyassociated with the estimated primary productivity maximum thanwith the deeper chlorophyll maximum layer, which representeda phytoplankton biomass maximum. Predators were positively correlatedwith abundant potential prey species. Variations in body lengthwith depth suggest that these fine-scale patterns were sufficientlystable to influence zooplankton growth. Consequences for grazingand predator – prey interactions in pelagic ecosystemsare discussed. 1Present address: NOAA/NMFS Southwest Fisheries Center, PO Box271, La Jolla, CA 92038, USA  相似文献   

9.
Summary The zooplankton community in the vicinity of the ice edge in the west central Weddell Sea was investigated in the late austral summer (March 1986). Sampling was done with two ships operating concurrently, one in the pack ice and the other in the adjcent open sea. Metazoan microzooplankton (<1 mm) was most abundant in the epipelagic zone. It consisted mostly of copepod nauplii and copepods of the genera Oithona, Oncaea, Ctenocalanus and Microcalanus. While species composition was similar in both areas, vertical patterns differed in that the microzooplankton had sparse populations in the upper 50 m under the ice. This may have been related to water temperature which in the upper 50 m under the ice was more than 1°C cooler than in the open sea. Zooplankton in the 1–20 mm size range was dominated by the calanoid copepods Metridia gerlachei, Calanus propinquus and Calanoides acutus which constituted half the biomass in the upper 1000 m. Their populations had highest densities in the upper 150 m, though much of the C. acutus population resided below 300 m. Metridia gerlachei and C. propinquus underwent diel vertical migrations in both areas whereas C. acutus did not migrate. Species diversity in the epipelagic zone was moderate and the fauna was characterized by species typical of the oceanic east wind drift. Diversity increased with depth and was due primarily to the appearance of circumpolar mesopelagic copepods in Weddell Warm Deep Water. Biomass of 1–20 mm zooplankton in the 0–1000 m zone was low (1.1–1.3 gDWm-2) compared to other Southern Ocean areas investigated with comparable methods. It is suggested that this is related to Weddell circulation patterns and the resulting low annual primary production in the central Weddell Sea.  相似文献   

10.
Zooplankton composition and distribution off the coast of Galicia, Spain   总被引:3,自引:0,他引:3  
During June and September 1984, zooplankton samples were collectedwith other hydrographic and biological data along the Galiciancoast (NW of Spain). In June copepods contributed {small tilde}60%to the total zooplankton community, with larvaceans, siphonophoresand cladocerans also abundant. In September >90% of the zooplanktonsampled were copepods. The dominant species of copepods in bothJune and September were Acartia clausi, Paracalanus parvus andTemora longicornis. The meroplankton was dominated by echinoderms,bryozoans, barnacle larvae and bivalve larvae. In June the averagezooplankton biomass was 31.08 mg C m–3; the Septemberaverage was 41.69 mg C m–3. The relationship between theslopes of the regression equations (biomass versus abundance)suggests that the zooplankton assemblage in June was composedby larger animals than in September. The major concentrationof zooplankton was between 0 and 50 m, with both June and Septemberdaytime surface samples having 6–7 times the amount oforganisms than the lower water column (50–100 m). Therewere no distinct differences in total zooplankton abundancesat the inshore and offshore stations; however, the inshore stationsoften had a higher percentage of meroplankton than the offshorestations. In June zooplankton abundance at the northern transectsand the western transects was similar. In September there weregreater concentrations of zooplankton in the western Galicianshelf as compared with the northern shelf. These differencesin the horizontal distribution of the zooplankton were relatedto upwelling events.  相似文献   

11.
The zooplankton community structure, including copepods, euphausiids, chaetognaths, and decapod larvae, was monitored during six circadian cycles using Bongo net (500 microns mesh net) samples from Bahía Magdalena, on the southwest coast of Baja California, México. Samples were obtained during three oceanographic surveys (March, July, and December 1996) to describe the changes in the zooplankton community structure throughout the main mouth of Bahía Magdalena. The zooplankton community structure showed strong changes with a close relation to environmental conditions. During March, a well-mixed water column with low temperature and salinity indicated an influence of the California Current water and local upwelling processes. During July, temperature increased and a wide salinity range was recorded. The stratification of the water column was intense during summer, enhancing the thermocline. The highest temperatures and salinity were recorded in December, related to the presence of the Costa Rica Coastal Current (CRCC). The thermocline deepened as water temperature increased. A typical temperate community structure with low specific richness dominated by Calanus pacificus, Nyctiphanes simplex, and Acartia clausi and high zooplankton biomass (average 9.3 and 5.5 ml 1000 m-3 respectively) during March and July shifted to a more complex tropical community structure with a low zooplankton biomass in December (average 0.37 ml 1000 m-3). The mouth of Bahía Magdalena has a vigorous exchange of water caused by tidal currents. The zooplankton community structure was not significantly different between the central part of Bahía Magdalena and the continental shelf outside the bay for all months. The results suggest a more dynamic inside-outside interaction of zooplankton assemblages than first thought.  相似文献   

12.
The qualitative composition, numerical abundance and verticaldistribution of radiolarians, tintinnines, nauplii and smallcopepod assemblages were studied in the central area of theSouthern Adriatic Pit at three stations during 10 cruises fromOctober 1985 to May 1990. The samples were collected with aplankton net of 53 µm mesh size equipped with a closingsystem in eight vertical layers. Data are presented for 53 radiolarians,61tintinnines and for the first time for 22 poecilostomatoidspecies in the Adriatic Sea. According to the numerical abundanceof assemblages and the frequency of occurrence of the bulk ofthe individual species population in the water column, fourcommunities could be defined: the surface (0–50 m), thesubsurface (50–100m), the midwater (100–600 m) andthe deep-sea community (below 600 m). The euphotic layer wascharacterized by tintinnines, copepod nauplii, cyclopoids andjuvenile calanoid copepods, while radiolarians and poecilostomatoidcopepods dominated in the deeper layers. The highest numericaldifferences between stations and seasons were noted only onthe surface. Towards the deeper layers, the differences wereconstantly smaller, and below400 m there was a uniform distributionof all assemblages. This research, on the basis of the numericalabundance of protozoans and micrometazoans, shows that the centralpart of the South Adriatic Pit is considerably richer than mentionedby earlier authors.  相似文献   

13.
Selection pressure induced by simultaneously occurring environmental threats is a major evolutionary driver for organisms in terrestrial, as well as in aquatic ecosystems. For example, protection against ultraviolet radiation (UVR) and predation include both morphological and behavioral components. Here we address those selective pressures on zooplankton by performing a latitudinal monitoring, combined with mechanistic experiments in the Antarctic Southern Ocean, where the UVR-threat is extremely high. We assessed vertical distributions of zooplankton along the Antarctic coast showing that animals were most abundant at 20–80 m and tended to avoid the surface at sites with clear water. UVR-threat disappeared at between 9 and 15 m at sites with low and high water transparency, respectively. Light levels were, however, sufficient for visual fish predation down to approximately 19 and 37 m, respectively. The few zooplankton that were present in surface waters had high levels of non-pigmented UVR-protective compounds (mycosporine-like amino acids) compared to deeper dwelling zooplankton. Overall they had low levels of red pigmented UVR-protective compounds (carotenoids), suggesting high predation on pigmented individuals. In a complementary laboratory study we showed that levels of UVR-protective compounds increased considerably when zooplankton were exposed to UVR in the absence of predator cues. The recently developed transparency-regulator hypothesis predicts that UVR avoidance is an important driver to diel vertical migration in transparent waters, such as in Antarctica. We, however, conclude that copepods resided well below the level where UVR had diminished to very low levels and that predator avoidance or food availability are more likely drivers of zooplankton vertical depth distribution in transparent marine systems.  相似文献   

14.
There is a growing concern that hypoxic and anoxic areas in the sea spread in extent and intensity, posing a severe risk to marine ecosystems and fisheries. Hypoxia may affect fish stocks directly or via detrimental effects on important prey species, such as zooplankton. A unique feature of the northern Benguela Current upwelling region and Angola-Benguela frontal system is a pronounced intermediate oxygen minimum layer (IOML) at 60-500 m depth with oxygen concentrations ≤ 1.4 mg O2l 1 (minimum < 0.7 mg O2l 1). Field studies during February-March 2002 demonstrated that the abundance of calanoid copepods and the biomass of mesozooplankton in general were severely reduced within the IOML. The dominant copepod Calanoides carinatus showed a bimodal vertical distribution with parts of the population either comprising all developmental stages concentrated in the surface layer (0-60 m), or copepodids C5 diapausing below 400 m depth apparently avoiding the IOML. Accordingly, abundances of other calanoid copepods were higher at the surface and below 300 m than in the centre of the IOML. The scarcity of planktonic life within the IOML raises the question whether this layer represents an effective barrier for zooplankton vertical migrations. Especially in C. carinatus, ontogenetic vertical migration plays a key role in the retention of the population within the productive upwelling region and for the rapid re-colonisation of plumes of newly upwelled water. To address this issue, the hypoxia tolerance of C. carinatus was determined in a series of laboratory-based, closed-bottle experiments in January 2005. Copepods were kept in gas-tight bottles and the decreasing oxygen concentrations were monitored to establish their minimum oxygen demands. Although copepodids survived apparently unharmed at surprisingly low oxygen concentrations of ca. 1.5 mg O2l− 1, they could not tolerate oxygen levels < 1.1 mg O2l 1, implying that the core of the IOML, where O2 concentrations are below this threshold, is uninhabitable for C. carinatus. In contrast, the IOML may represent a refuge from competition and predation for other copepod species specifically adapted to hypoxic environments.  相似文献   

15.
Horizontal samples taken with the BIONESS at various depths on 13 stations within 115 km of the coast of Peru showed nine species of fish larvae present with the most common of these being, in order of abundance, Leuroglossus stilbius, Sardinops sagax, Diogenichthys laternatus, Merluccius gayi and Engraulis ringens . All the species except S. sagax and E. ringens showed a diurnal migration to the upper 30 m of water at night. The two above species were present in the top 30 m at all times. The size of the larvae of all species did not vary with time, depth or sample location. The numbers of larvae increased with zooplankton m−3 up to 1000 copepods m−3 above which no further increase in larvae occurred. A significant linear relationship was found between the total number of larvae m−2 and biomass and zooplankton m−2, but not between individual species of larvae and zooplankton biomass. Significant correlations were found between E. ringens and seven species of copepods found in the upper 50 m of water.
Polymodal analysis showed that the larval populations of all species, with the possible exception of S. sagax , were made up of more than one sub-population. From this analysis the length of the spawning season forE. ringens was estimated at 54–68 days.
A significant correlation was found between the numbers of E. ringens larvae m−2 and the maximum concentration of chlorophyll α, as measured with Batfish, in the area of the BIONESS stations. This showed the largest numbers of larvae in areas of the highest chlorophyll concentrations.  相似文献   

16.
The impact of grazing by copepods on phytoplankton was studied during a seasonal cycle on the Galician shelf off A Coruña (NW Spain). Grazing was estimated by measuring the chlorophyll gut content and the evacuation rates of copepods from three mesh-size classes: 200-500 (small), 500-1000 (medium), and 1000-2000 μm (large). Between February 1996 and June 1997, monthly measurements of water temperature, chlorophyll concentration, primary production rates, and copepod abundance, chlorophyll gut content, and evacuation rates were taken at an 80-m-deep, fixed shelf station. Additionally, the same measurements were collected daily during two bloom events in March and in July 1996. Small copepods were the most abundant through the seasonal cycle. The highest grazing impact, however, was due to the medium and large size classes. Grazing by small copepods exceeded grazing by medium and large copepods only during phytoplankton spring blooms. The impact of copepod grazing (considering all size fractions) was generally low. On average, 2% of the phytoplankton biomass and 6% of the primary production were removed daily by the copepod community. Maximum grazing impact values (9% of the phytoplankton biomass and 39% of the primary production) were found in mid-summer. These results suggest that most of the phytoplankton biomass would escape direct copepod grazing in this upwelling area.  相似文献   

17.
The Zooplankton community of Croker Passage,Antarctic Peninsula   总被引:5,自引:2,他引:3  
Summary Zooplankton species composition, abundance and vertical distribution were investigated in the upper 1000 m of Croker Passage, Antarctic Peninsula during the austral fall (March–April, 1983). 106 species were identified, many being mesopelagic and reported previously from the Southern Ocean. The most numerous species (>1000/100 m3) were the copepodsMetridia gerlachei, Microcalanus pygmaeus, Oncaea antarctica andOncaea curvata. Oncaea curvata alone constituted half the zooplakton population. Zooplankton biomass was dominated by three copepod species,Metridia gerlachei, Calanoides aculus andEuchaeta antarctica,which comprised 74% of the biomass. Size analysis revealed most of the zooplankton numbers were in the >1 mm fraction. The biomass distribution was polymodal with major maxima in the >1 mm and the 4–4.9 mm size classe. The >1 mm peak, exclusive of protozoans, was primarily copepod nauplii and copepodites ofOncaea, Metridia andMicrocalanus. The 4–4.9 mm peak was mostlyCalanoides acutus andMetridia gerlachei.All of the principal species had broad vertical distributions both day and night. There was some suggestion of diel vertial migration byMetridia gerlachei andEuchaeta antarctica, with segments of their populations migrating into the upper 100 m and 200 m, respectively, at night. Most of the dominant and subdominant species were concentrated below 200 m,with only the subdominantOithona similis having its maximum in the epipelagic zone. The occurrence of zooplankton at winter depths appears to have been earlier in Croker Passage in 1983 than has been generally reported for waters south of the Polar Front.Total standing stock of net-caught zooplankton (>15 mm) in the upper 1000 m was estimated at 3.1 gDW/m2, which is somewhat higher than values reported for the West Wind Drift and for open ocean areas of temperate to tropical latitudes.Euphausia superba (17–52 mm) dominated the pelagic biomass, exceeding zooplankton standing stock under a square meter of ocean by a factor of 15. This is in contrast to lower latitudes where zooplankton biomass is usually greater than macrozooplankton-micronekton.  相似文献   

18.
Summer dynamics of the deep chlorophyll maximum in Lake Tahoe   总被引:3,自引:0,他引:3  
Vertical profiles of chlorophyll and phytoplankton biomass weremeasured in Lake Tahoe from July 1976 through April 1977. Adeep chlorophyll maximum (DCM) persisted during summer and earlyautumn (July—October) near 100 m, well below the mixedlayer and at the upper surface of the nitracline. The DCM coincidedwith the phytoplankton biomass maximum as determined from cellcounts. In addition, the composition of the phytoplankton assemblagewas highly differentiated with respect to depth. Cyclotellastelligera was the predominant species in the mixed layer whilethe major species in the DCM layer included C. ocellata andseveral green ultraplanktonic species. In situ cell growth playsa substantial role in maintaining the DCM, but sinking of cellsfrom shallower depths and zooplankton grazing above the DCMmay contribute to the maintenance of the DCM. Calculations supportthe interpretation that the summer DCM persists at the boundarybetween an upper, nutrient-limited phytoplankton assemblageand a deeper, light-limited assemblage.  相似文献   

19.
Vertical distribution of zooplankton was investigated over a3-week period at a fixed station in the open NW Mediterraneanduring the DYNAPROC cruise (May 1995). The observational periodcoincided with the transition from spring bloom to oligotrophyin this area. Vertical distribution and migration in the 0–1000m water column are described in detail for the main speciesof copepods (>500 µm). Ontogenetic migration is reportedfor Neocalanus gracilis, Euchaeta acuta and Pleuromamma abdominalis.This study also documented the downwards seasonal migrationof Calanus helgolandicus. Short-term changes in the verticaldistribution of the small-sized organisms (>50 µm)in the upper 100 m are discussed in relation to the two majorwind events that occurred during the cruise. The naupliar stagesof copepods and euphausiids appeared unable to counter the upwardsvertical advection and the wind-induced mixing, while no markedchanges were observed for Oithona spp. and Microsetella spp.  相似文献   

20.
Summary Deep profiles of particulate organic matter, microplankton (phytoplankton and bacteria), zooplankton and their metabolic activities were investigated during two summer voyages to the eastern Canadian Arctic. Magnitudes and depth distributions were similar in many respects to observations from temperate and tropical waters. Strong gradients in most properties were observed in the upper 50–100 m and subsurface maxima were generally associated with the upper mixed-layer (>50 m). In addition to the general vertical decreases in plankton biomass and metabolic activity there was evidence for both rapid transport (sinking) of organic matter and for enhanced (above background) levels of microbial metabolic activity in deep waters (>500 m). Zooplankton depth distributions differed from the pattern generally observed at lower latitudes; in the Arctic, zooplankton abundance decreased to a lesser degree with depth than particulate organics and microplankton. The overwintering behavior of high-latitude zooplankton appeared to be the best explanation for their relatively high abundance at depth. Despite this, however, zooplankton apparently contributed little to the total column community metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号