首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX.  相似文献   

2.
Human monocytes express two types of IgG FcR, Fc gamma RI and Fc gamma RII. These can be assayed by using indicator E sensitized by human IgG (EA-human IgG) or mouse IgG1, (EA-mouse IgG1), respectively. On mouse macrophages, Fc gamma RI is sensitive to trypsin, whereas Fc gamma RII is trypsin resistant. We studied the effects of the proteolytic enzymes pronase and trypsin on human monocyte Fc gamma R. Neither enzyme caused a decrease in rosetting mediated by monocyte Fc gamma RI. Human Fc gamma RII is polymorphic, and monocytes interact either strongly or weakly with mouse IgG1. The interaction of low responder monocytes with mouse IgG1 was dramatically increased (to the level exhibited by high responder monocytes) by protease treatment. The effects of proteases on Fc gamma RII were investigated in more detail by using monocytes from which Fc gamma RI was selectively modulated by using immobilized immune complexes. Proteolysis of such modulated monocytes induced an increased interaction with EA-human IgG. Fc gamma RII appears to mediate this interaction. This conclusion is supported by the observation that after proteolysis, the Fc gamma RII-mediated binding of EA-mouse IgG1 becomes susceptible to inhibition by (monomeric) human IgG. To quantify the effect of proteolytic enzymes on Fc gamma RII, we performed binding studies with cell line K562, that expresses only Fc gamma RII. A significant increase in Ka of Fc gamma RII for dimeric human IgG complexes was observed when K562 cells were treated with protease. To elucidate the mechanism of this enhancement of Ka by proteolysis, we performed immunoprecipitation studies. Neither m.w., nor IEF pattern of Fc gamma RII were influenced by proteolysis. Moreover, the expression of Fc gamma RII was not affected by proteolysis as evidenced by immunofluorescence studies and Scatchard analysis, and neither were Fc gamma RI or Fc gamma RIII induced. We conclude that proteolysis increases the affinity of Fc gamma RII for human IgG, and speculate that such a proteolysis-induced change may also occur in vivo, e.g., at inflammatory sites.  相似文献   

3.
T cell-derived cytokines IFN-gamma and IL-4 have different regulatory effects on two functionally important molecules on human monocytes: MHC class II Ag and the Fc receptor for monomeric IgG, Fc gamma RI (CD64). MHC class II Ag, and Fc gamma RI are both upregulated in the presence of IFN-gamma. IL-4 induces MHC class II Ag expression but reduces Fc gamma RI expression. Recently, we showed that the cytokine IL-10 also affects MHC class II Ag expression. Here, we demonstrate that in contrast to the down-regulation of MHC class II Ag expression, IL-10 stimulates Fc gamma RI expression on human monocytes comparable to the levels of Fc gamma RI expression induced by IFN-gamma. The IL-10-induced Fc gamma RI expression is specific because anti-IL-10 antibodies completely reverse the IL-10-induced surface expression of Fc gamma RI and correlate with an enhanced capacity to lyse anti-D-coated human rhesus-positive erythrocytes. IL-10 fails to induce the expression of Fc gamma RII (CD32) and Fc gamma RIII (CD16). Furthermore, we demonstrate that IL-10 is able to prevent down-regulation in surface membrane expression of all three Fc gamma R that can be found when monocytes are cultured in the presence of IL-4. In contrast to IFN-gamma, IL-10 does not restore the reduced antibody-dependent cellular cytotoxicity (ADCC) activity of IL-4-cultured monocytes. Together, these results show that, similar to IFN-gamma, IL-10 is capable of enhancing Fc gamma R expression and ADCC activity, and that IFN-gamma, IL-4, and IL-10 have different regulatory effects on both monocyte Ag-presenting capacity and ADCC activity.  相似文献   

4.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

5.
A substrain of the human monocyte-like cell line U937, which is a cholesterol auxotroph, was used to study the effect of cellular cholesterol depletion on the expression of the type I Fc receptor for IgG (Fc gamma RI). Measurement of Fc gamma RI expression was performed by immunofluorescence and flow cytometry using the monoclonal antibody (mAb) 32.2, which is specific for an epitope on Fc gamma RI, and monomeric IgG2a, which binds to the ligand binding site of Fc gamma RI. Incubation of these cells for 24 h in growth medium containing delipidated fetal calf serum depletes cellular cholesterol without affecting growth or viability. While incubation of U937 cells with human interferon-gamma (IFN-gamma) increased Fc gamma RI expression, cholesterol depletion after cell growth in media containing delipidated serum and IFN-gamma resulted in reduced binding of both mAb 32.2 and IgG2a. A significant decrease in the number of cell surface binding sites, as measured by mean fluorescence intensity, was observed after cholesterol depletion. Supplementation of the delipidated serum medium with pure cholesterol in an ethanol/bovine serum albumin mixture, which replenished cellular cholesterol and supported growth, failed to restore antibody binding significantly. In contrast, low-density lipoprotein (LDL) which also delivered cholesterol to the cells restored binding both in terms of the number of the reactive cells and cell surface receptor density. High-density lipoprotein (HDL3), which does not deliver cholesterol to the cells, showed results similar to those obtained with pure cholesterol. This indicates that either LDL cholesterol is better utilized for membrane synthesis than pure cholesterol or that LDL provides another component, in addition to cholesterol, which is required for expression of Fc gamma RI, but not for growth. These studies indicate a role for LDL in regulating the expression of Fc gamma RI on the cell surface.  相似文献   

6.
7.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

8.
9.
Different classes of receptors for the Fc moiety of IgG (Fc gamma R) have been defined on human monocytes and macrophages: Fc gamma RI, Fc gamma RII, and Fc gamma RIII. All three classes are capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Fc gamma RI, which binds monomeric human IgG (hIgG) with high affinity, was shown an effective cytotoxic trigger molecule on different types of cells. In vitro, the inhibition of Fc gamma RI-mediated ADCC by hIgG is well documented. The low affinity receptor classes, Fc gamma RII and Fc gamma RIII, are not blocked by monomeric hIgG. Because monomeric hIgG is present at high concentrations in plasma and interstitial fluids it has been postulated inhibitory in vivo. We investigated the effect of rIFN-gamma on macrophage Fc gamma RI-mediated ADCC in the presence of low doses hIgG. With human E sensitized with hIgG as target cells, Fc gamma RI was studied selectively. We found that rIFN-gamma enhances both expression and cell surface density of Fc gamma RI on cultured peripheral blood monocytes. Furthermore, this cytokine partially reversed the inhibitory effect of monomeric hIgG on ADCC. More interestingly, we found that the cytolytic mechanism of monocyte-derived macrophages changed completely after prolonged culture with rIFN-gamma. Monocytes cultured for 9 days in control medium mediate predominantly phagocytosis. After long term rIFN-gamma stimulation (9 days), monocyte-derived macrophages almost completely lost the capacity to perform phagocytosis. Interestingly, they became highly efficient in mediating extracellular lysis of human E sensitized with hIgG. Short term rIFN-gamma stimulated monocyte-derived macrophages (for the last 40 h of culture) were found to mediate both phagocytosis and extracellular lysis. Our findings suggest that in vivo rIFN-gamma-stimulated macrophages may be most efficient in Fc gamma RI-mediated cytolysis as a consequence of a changed cytolytic mechanism in combination with enhanced Fc gamma RI density.  相似文献   

10.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

11.
We have shown previously that certain proteases can modulate the affinity of human Fc gamma RII for IgG. To study whether proteolytic events not only increase FcR affinity, but are essential for Fc gamma R functioning, we evaluated the effect of different protease inhibitors on binding mediated by two classes of human monocyte IgG FcR. These R, Fc gamma RI and Fc gamma RII, can be analyzed selectively in rosetting assays by employing E sensitized by either human IgG or mouse IgG1. Rosetting by both classes of R was inhibited profoundly by incubation of monocytes with different types of serine protease inhibitors such as diisopropylfluorophosphate, PMSF, or N alpha-tosyl-L-lysyl-chloromethylketone. The type II Fc gamma R was much more sensitive to inhibition than Fc gamma RI. We, therefore, studied these effects in more detail by using cell line K562, which expresses only Fc gamma RII. PMSF, diisopropylfluorophosphate, and N alpha-tosyl-L-lysyl-chloromethylketone were, again, inhibiting Fc gamma RII-mediated binding dose-dependently, whereas several inhibitors of metal, aspartic, or thiol proteases proved ineffective. Furthermore, Fc gamma RII-mediated rosetting on both cell types was profoundly inhibited by the addition of different small synthetic substrates of serine esterases. In an attempt to discriminate whether the proteolytic event is an intra- or extracellular process, macromolecular antiproteases such as soybean or ovomucoid trypsin inhibitor or alpha 1-antiprotease were tested. Fc gamma RII-mediated binding by K562 cells was not susceptible to macromolecular antiproteases, in contrast to monocytes. In the presence of drugs which interfere both with receptor recycling and intracellular traffic between endosomal compartments (e.g., primaquine or monensin), the effects of inhibitors were largely abrogated. This showed that endocytosis of inhibitors might be essential, indicating the proteolytic event to be intracellular. Our findings suggest that human monocyte Fc gamma RII-mediated functioning is dependent upon the action of one or more serine proteases.  相似文献   

12.
A major new challenge for vaccine development is to target APC such as monocytes and macrophages for efficient Ag processing and presentation. It has been shown that Fc gamma R-mediated uptake of Ag-antibody complexes can enhance Ag presentation by myeloid cells at least 100-fold, and directing Ag to Fc gamma R in mice brings about a substantial increase in the effectiveness of immunization while eliminating the requirement for adjuvant. It has not been determined which of the three subclasses of human Fc gamma R on myeloid cells (Fc gamma RI, Fc gamma RII, or Fc gamma RIII) function to enhance Ag presentation. We have targeted our Ag (TT) to each of the three subclasses of human Fc gamma R on monocytes using Fc gamma R subclass-specific mAb-TT conjugates, and have measured TT presentation by monitoring T cell proliferation in response to TT. In addition, we have examined enhanced Ag presentation mediated by a human IgG1 (HIgG1) anti-TT mAb. All anti-Fc gamma R-TT conjugates enhanced Ag presentation. HIgG1 anti-TT, in monomeric form, enhanced Ag presentation through Fc gamma RI only. Anti-Fc gamma RI-Ag conjugates appear to be optimal for application as vaccines. They are monocyte/macrophage-specific, are very efficiently processed and presented, and enhance Ag presentation despite occupation of Fc gamma RI with HIgG.  相似文献   

13.
The objectives of these studies were to study the effects of bacterial lipopolysaccharide (LPS) on interferon-gamma (IFN-gamma)-induced Fc receptor expression on human monocytes and to examine whether these effects were mediated through stimulation of interleukin 1 (IL-1) production. Fc receptor expression was determined by binding of monomeric monoclonal murine immunoglobulin (Ig)G2a and cytofluorographic analysis. IL-1 activity in monocyte supernatants and lysates was assayed by augmentation of mitogen-induced murine thymocyte proliferation. IFN-gamma induced the expression of Fc receptors on human monocytes that were specific for murine IgG2a. This induction was inhibited by the addition of LPS in amounts as low as 2 to 8 pg/ml. LPS inhibition of IFN-gamma-induced Fc receptor expression was paralleled by the appearance of IL-1 in monocyte lysates and supernatants. The addition of purified human or recombinant IL-1 beta at the initiation of culture similarly inhibited the expression of IFN-gamma-induced Fc receptors on the monocytes. LPS also inhibited Fc receptor expression on the human myelomonocytic cell line THP-1 after induction with IFN-gamma or phorbol myristate acetate alone or with both agents together. This inhibition also was paralleled by the production of IL-1 but the addition of exogenous IL-1 to the THP-1 cells had no effect on IFN-gamma-induced Fc receptor expression. Tumor necrosis factor (TNF) inhibited IFN-gamma-induced Fc receptor expression on human monocytes but was much less potent than comparable amounts of IL-1. TNF also did not inhibit Fc receptor expression on THP-1 cells. In fact, IL-1 or TNF led to an enhancement in IFN-gamma-induced Fc receptor expression on THP-1 cells. These results indicate that LPS can inhibit IFN-gamma-induced Fc receptor expression on human monocytes and that IL-1 and TNF may mediate these effects of LPS. Thus, an autocrine or paracrine role is suggested for these cytokines. The possibility exists that intracellular IL-1 resulting from LPS stimulation may be at least in part responsible for inhibition of Fc receptor expression.  相似文献   

14.
Glucocorticoid hormones, although able to exert profound immunosuppressive effects, do not suppress mononuclear phagocyte activation by IFN-gamma and may even enhance it. For example, expression and functional activity of the high affinity FcR for IgG on human mononuclear phagocytes (FcR gamma I) is increased by IFN-gamma and is maximal after co-treatment with IFN-gamma plus the glucocorticoid dexamethasone (DEX). To determine whether there are other mononuclear phagocyte surface Ag that are regulated in this manner, hybridomas were prepared using IFN-gamma-plus-DEX-treated human monocytes as immunogen. Five IgG1 mAb (Mac 2-8, 2-38, 2-48, 2-49, and 2-158) were developed that recognize a trypsin-sensitive mononuclear phagocyte-specific surface Ag of Mr 155,000. There was no detectable reactivity of these mAb to lymphocytes or granulocytes or to several cell lines, including U-937 and HL-60. The p155 Ag was detected on monocytes and increased significantly with time of culture or after treatment with DEX. Expression was maximal after co-treatment with rIFN-gamma plus DEX, but was inhibited or unaffected by treatment with IFN-gamma alone. For freshly isolated cells, expression of the p155 Ag was highest on peritoneal macrophages. Our results indicate that the p155 Ag is a newly identified Ag of the human mononuclear phagocyte lineage and may represent, in the least, a phenotypic marker of monocyte differentiation or maturation.  相似文献   

15.
Macrophage receptors for the Fc portion of IgG play an important role in host defense, inflammation, and the pathophysiology of autoimmune disorders. We studied one important function of Fc gamma receptors--the ability to bind IgG ligand. Direct binding experiments analyzed by nonlinear regression were consistent with monomeric and trimeric IgG binding to a single class of receptors. Indirect binding experiments were also consistent with this interpretation and revealed that both IgG ligands completely inhibited the binding of the other. In addition, we used an anti-Fc gamma RII monoclonal antibody known to compete for the Fc gamma RII ligand binding site and known to inhibit IgG trimer binding to other cells. At concentrations of antibody which saturated all Fc gamma RII sites, no inhibition of IgG trimer binding to U-937 was observed. This was evident despite the observation that the numbers of Fc gamma RI and Fc gamma RII, determined by equilibrium binding of monomeric IgG and anti-Fc gamma RII antibody, respectively, were similar on U-937. Monoclonal antibodies were used to compare the expression and modulation of Fc gamma receptor proteins with their ability to bind monomeric and trimeric IgG ligands. Dexamethasone and gamma-interferon regulated U-937 Fc gamma RI protein expression and IgG ligand binding to a similar degree. In contrast, the expression of Fc gamma RII was not altered by dexamethasone. Interferon-gamma primarily stimulated Fc gamma RI, as determined both by reactivity with monoclonal antibody (227 +/- 26%) and by monomeric IgG ligand binding (350 +/- 151%). In addition, dexamethasone inhibited by 33% the gamma-interferon effect on Fc gamma RI protein and by 56% the effect on Fc gamma RI binding of monomeric IgG. Preincubation of U-937 with anti-Fc gamma RII antibody did not alter the effect of dexamethasone or gamma-interferon on IgG trimer binding. These data indicate that on U-937 cells Fc gamma RII does not function in the recognition of small molecular weight immune complexes and that Fc gamma RI is the Fc gamma receptor responsible for the binding of both monomeric and trimeric human IgG. Furthermore, Fc gamma RI is the major Fc gamma receptor on U-937 that is modulated by both gamma-interferon and glucocorticoids.  相似文献   

16.
Biologically relevant activation of human mast cells through Fc receptors is believed to occur primarily through the high-affinity IgE receptor Fc epsilon RI. However, the demonstration in animal models that allergic reactions do not necessarily require Ag-specific IgE, nor the presence of a functional IgE receptor, and the clinical occurrence of some allergic reactions in situations where Ag-specific IgE appears to be lacking, led us to examine the hypothesis that human mast cells might express the high-affinity IgG receptor Fc gamma RI and in turn be activated through aggregation of this receptor. We thus first determined by RT-PCR that resting human mast cells exhibit minimal message for Fc gamma RI. We next found that IFN-gamma up-regulated the expression of Fc gamma RI. This was confirmed by flow cytometry, where Fc gamma RI expression on human mast cells was increased from approximately 2 to 44% by IFN-gamma exposure. Fc epsilon RI, Fc gamma RII, and Fc gamma RIII expression was not affected. Scatchard plots were consisted with these data where the average binding sites for monomeric IgG1 (Ka = 4-5 x 108 M-1) increased from approximately 2,400 to 12,100-17,300 per cell. Aggregation of Fc gamma RI on human mast cells, and only after IFN-gamma exposure, led to significant degranulation as evidenced by histamine release (24.5 +/- 4.4%): and up-regulation of mRNA expression for specific cytokines including TNF-alpha, GM-CSF, IL-3 and IL-13. These findings thus suggest another mechanism by which human mast cells may be recruited into the inflammatory processes associated with some immunologic and infectious diseases.  相似文献   

17.
Immune interferon (IFN-gamma) induces in human neutrophils accumulation of the mRNA for the high affinity receptor for monomeric IgG (Fc gamma R-I, CD64) with a mechanism that is independent from de novo protein synthesis and from activation of the Na+/H+ antiporter. Monocyte-derived macrophages can also be induced to express high levels of Fc gamma R-I mRNA by IFN-gamma, without requirement of protein synthesis. Unlike what is observed in neutrophils, induction by IFN-gamma of macrophage Fc gamma R-I mRNA was significantly depressed by the Na+/H+ antiporter inhibitor amiloride. These results indicate that phagocytes' Fc gamma R-I mRNA induction by IFN-gamma is regulated by different mechanisms depending on the target cells.  相似文献   

18.
We investigated the effects of interferon-gamma (IFN-gamma), phorbol myristate acetate (PMA), and dibutyryl cAMP (Bt2cAMP) on Fc gamma R subtype expression on a human eosinophilic leukemia cell line, EoL-3. Unstimulated EoL-3 cells expressed Fc gamma RII as determined by monoclonal antibody (mAb) IV-3, whereas there was little or no Fc gamma RI and Fc gamma RIII expression as determined by mAbs 32.2 and 3G8, respectively. IFN-gamma induced Fc gamma RI expression, and Bt2 cAMP, which did not induce Fc gamma RI expression by itself, showed an additive effect on IFN-gamma-induced Fc gamma RI expression. Fc gamma RII expression was augmented by IFN-gamma, PMA, and Bt2 cAMP. Bt2 cAMP also showed an additive effect on IFN-gamma-augmented Fc gamma RII expression. Fc gamma RIII expression could be induced only by IFN-gamma plus Bt2 cAMP. H-7, a protein kinase C (PK-C) inhibitor, suppressed the enhancement of Fc gamma R subtype expression induced by these reagents. These results show that Fc gamma R subtype expression on EoL-3 cells is regulated differently in each subtype and that cAMP and PK-C play important roles in the regulation.  相似文献   

19.
p72 high affinity receptors (Fc gamma RI) for the Fc portion of IgG molecules on human peripheral blood monocytes mediate a variety of beneficial functions, but also have deleterious effects in certain clinical situations. In the present study, the photosensitizing porphyrins hematoporphyrin derivative and dihematoporphyrin ether (DHE), which are known to preferentially affect the cell membrane, were found to significantly inhibit binding of mouse IgG2a antibodies to the ligand binding site of Fc gamma RI on human peripheral blood monocytes and the U937 human monocytic cell line. Fc gamma RI receptors could be identified with a monoclonal antibody which recognizes an epitope distinct from the ligand binding site, indicating that photosensitization induced a structural alteration rather than loss of the receptor molecule from the cell surface. The effect of DHE and light appeared to be highly specific, since binding of monoclonal antibodies to other surface structures was not decreased. DHE plus light-induced modulation of Fc gamma RI was found to be mediated by superoxide anions, since addition of a mimic of superoxide dismutase restored both binding of mouse IgG2a to Fc gamma RI as well as human monocyte accessory cell function. These studies identify porphyrin photosensitization as a unique mechanism by which to selectively down-regulate Fc gamma RI-mediated functions.  相似文献   

20.
Human recombinant gamma interferon (IFN-gamma), which is free from other lymphokines, significantly increased expression of receptors for IgE (Fc epsilon R) on the human monocyte cell line U-937. Fc epsilon R were measured by assaying specific (saturable) binding of 125I-labeled or fluorescein isothiocyanate (FITC)-labeled human IgE (Sha) to U-937 cells. Cell-bound IgE was analyzed by gamma counting and by flow cytometry. IFN-gamma-induced enhancement in IgE binding was a consequence of an increase in the number and density of Fc epsilon R, as cell size did not change significantly after treatment. Scatchard analysis of 125I-IgE binding curves revealed the presence of a homogeneous population of binding sites for IgE in control and in IFN-gamma-treated cells. IFN-gamma treatment did not change the value of the dissociation constant of Fc epsilon R for 125I-IgE. IFN-alpha and IFN-beta had only slight effects on the expression of Fc epsilon R. Dexamethasone (200 nM) diminished the IFN-gamma-induced enhancement in the number of Fc epsilon R by about 50%, the same extent as in control cells. IFN-gamma treatment did not cause a significant alteration in cell number, cell cycle kinetics, or macromolecular synthesis, and enhanced expression of Fc epsilon R was probably not mediated through the cyclic AMP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号