首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin action is enhanced in people who exercise regularly and vigorously. In the present study, the hyperinsulinemic, euglycemic clamp procedure was used to determine whether this enhanced insulin action is due to an increased sensitivity and/or an increased responsiveness to insulin. To avoid the variability that exists between individuals and complicates cross-sectional studies, the same subjects were studied in the trained exercising state and again after 10 days of physical inactivity. When the plasma insulin concentration was maintained at approximately 78 microU.ml-1 (a submaximal level), glucose disposal rate averaged 8.7 +/- 0.5 mg.kg-1.min-1 before and 6.7 +/- 0.6 mg.kg-1.min-1 after 10 days of activity (P less than 0.001). When the plasma insulin concentration was maintained at approximately 2,000 microU.ml-1 (a maximally effective concentration), the rate of glucose disposal was not significantly different before (15.3 +/- 0.5 mg.kg-1.min-1) compared with after (14.5 +/- 0.4 mg.kg-1.min-1) 10 days without exercise. These results provide evidence that the reversal of enhanced insulin action that occurs within a few days when exercise-trained individuals stop exercising is due to a decrease in sensitivity to insulin, not to a decrease in insulin responsiveness.  相似文献   

3.
4.
The objectives of this study were to determine how long increased insulin sensitivity, elicited by exercise training, persists after the end of training and what the effect of weight gain is on this retention. Exercise-trained (ET) rats ran voluntarily in freely rotating wheel cages, and insulin sensitivity was assessed by oral glucose tolerance tests (OGTT) and insulin suppression tests (IST). After training, ET rats were retired for 1, 3, or 7 days (R1, R3, or R7). Initial OGTT and IST studies indicated that sensitivity to insulin-induced glucose uptake was increased in ET rats compared with sedentary control (C) rats and was progressively lost with retirement: ET greater than R1 and R3 greater than R7 and C rats, and this reaction was generally associated with a rapid gain in body weight. Subsequent IST tests were performed on C and R7 rats fed laboratory chow or a hypocaloric diet consisting of equal parts of cellulose and chow for 7 days before the test. The results of these tests showed that steady-state serum glucose (SSSG) levels averaged 165 +/- 12 mg/dl for chow-fed C rats and 172 +/- 11 mg/dl for chow-fed R7 rats that gained body weight at rates twice those of C rats. Chow-fed R7 rats, gaining weight at rates comparable to C rats, had SSSG levels of 104 +/- 6 mg/dl. C and R7 rats fed the hypocaloric diet had SSSG values of 102 +/- 6 and 59 +/- 4 mg/dl, respectively. Muscle glycogen levels were comparable in all groups, and liver glycogen was lower in C and R7 rats fed the hypocaloric diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.  相似文献   

6.
7.
To clarify the impact of vigorous physical training on in vivo insulin action and glucose metabolism independent of the intervening effects of concomitant changes in body weight and composition and residual effects of an acute exercise session, 10 lean, 10 obese, and 6 diet-controlled type II diabetic men trained for 12 wk on a cycle ergometer 4 h/wk at approximately 70% of maximal O2 uptake (VO2max) while body composition and weight were maintained by refeeding the energy expended in each training session. Before and 4-5 days after the last training session, euglycemic hyperinsulinemic (40 mU.m2.min-1) clamps were performed at a plasma glucose of 90 mg/dl, combined with indirect calorimetry. Total insulin-stimulated glucose disposal (M) was corrected for residual hepatic glucose output. Body weight, fat, and fat-free mass (FFM) did not change with training, but cardiorespiratory fitness increased by 27% in all groups. Before and after training, M was lower for the obese (5.33 +/- 0.39 mg.kg FFM-1.min-1 pretraining; 5.33 +/- 0.46 posttraining) than for the lean men (9.07 +/- 0.49 and 8.91 +/- 0.60 mg.kg FFM-1.min-1 for pretraining and posttraining, respectively) and lower for the diabetic (3.86 +/- 0.44 and 3.49 +/- 0.21) than for the obese men (P less than 0.001). Insulin sensitivity was not significantly altered by training in any group, but basal hepatic glucose production was reduced by 22% in the diabetic men. Thus, when intervening effects of the last exercise bout or body composition changes were controlled, exercise training per se leading to increased cardiorespiratory fitness had no independent impact on insulin action and did not improve the insulin resistance in obese or diabetic men.  相似文献   

8.
The purpose of this study was to evaluate the role of exercise intensity in the effect of physical training on insulin sensitivity. The insulin tolerance test (ITT) was applied to quantify insulin sensitivity. Eighteen healthy, young, untrained men and women participated in a 4-week, five times per week, 1-h per session bicycle-ergometer training program. Training consisted of 3-min bouts of cycling interspersed with 2 min at a lower exercise intensity. Intensities were 80 and 40% of pretraining maximal power output (W(max)) in the high-intensity (HI) and 40 and 20% W(max) in the low-intensity (LI) group. The insulin sensitivity index (IS(index)) was similar in the HI and LI group before the training intervention [mean (SD) -0.1898 (0.058) and -0.1892 (0.045), respectively]. After training, the IS(index) was -0.2358 (0.051) (P = 0.005 vs pretraining) in the HI group and -0.2050 (0.035) (P = 0. 099 against pretraining) in the LI group. We conclude that improvements in insulin sensitivity are more pronounced with high-intensity training, when exercise frequency and duration are kept similar. We further conclude that the ITT is suitable for use in intervention studies.  相似文献   

9.
The purpose of this study was to compare the effects of short-term exercise training on insulin-responsive glucose transporter (GLUT-4) concentration and insulin sensitivity in young and older individuals. Young and older women [22.4 +/- 0.8 (SE) yr, n = 9; and 60.9 +/- 1. 0 yr, n = 10] and men (20.9 +/- 0.9, n = 9; 56.5 +/- 1.9 yr, n = 8), respectively, were studied before and after 7 consecutive days of exercise training (1 h/day, approximately 75% maximal oxygen uptake). The older groups had more adipose tissue, increased central adiposity, and a lower maximal oxygen uptake. Despite these differences, increases in whole body insulin action (insulin sensitivity index, determined with an intravenous glucose tolerance test and minimal-model analysis) with training were similar regardless of age, in both the women and men (mean increase of 2.2 +/- 0.3-fold). This was accompanied by similar relative increases in muscle (vastus lateralis) GLUT-4 protein concentration, irrespective of age (mean increase of 3.1 +/- 0.7-fold). Body mass did not change with training in any of the groups. These data suggest that older human skeletal muscle retains the ability to rapidly increase muscle GLUT-4 and improve insulin action with endurance training.  相似文献   

10.
11.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   

12.
The effect of physical training on insulin and glucagon release in perfused rat pancreas was examined in the spontaneously exercised group running in a wheel cage an average of 1.4 km/day for 3 weeks and in the sedentary control group kept in the cage whose rotatory wheel was fixed on purpose. Pancreatic immunoreactive insulin (IRI) responses to glucose and arginine were reduced by 28% and 47.8% respectively in trained rats compared with untrained rats, while IRI content of the pancreas was similar in these two groups. The demonstrated decrease in insulin secretion of the beta-cell of the trained rats, in response to the glucose and arginine stimulations, may be functional in nature. On the other hand, neither pancreatic glucagon immunoreactivity (GI) response to glucose and arginine nor GI content of the pancreas was modified by exercise training. These results demonstrate that exercise training reduces IRI responses to glucose as well as to arginine stimulations, but does not modify any secretory response of pancreatic GI.  相似文献   

13.
14.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

15.
Training stimulates glucose uptake and metabolism by muscles independent of a rise in serum glucose. Whether this increased insulin action is associated with enhanced insulin binding in muscles is unknown. We studied the effect of 6 weeks of treadmill running on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis by the soleus muscle of Swiss Webster mice. Training was progressively increased. The in vitro studies using intact soleus preparations were done 48 h after the last exercise bout. Training increased insulin binding, insulin-stimulated uptake of 2-deoxy-D-glucose, and glycogenesis but not glycolysis in the soleus. Our data suggest that the enhanced glucose uptake and metabolism in muscles induced by exercise training are associated with an increase in insulin binding.  相似文献   

16.
The application of whole-body electromyostimulation (WB-EMS) in the area of fat reduction and body shaping has become more popular recently. Indeed, some studies prove positive outcomes concerning parameters related to body composition. However, there are conflicting data as to whether EMS relevantly impacts energy expenditure (EE) during or after application. Thus, the main purpose of the study was to determine the acute effect of WB-EMS on EE. Nineteen moderately trained men (26.4 ± 4.3 years) were randomly assigned to a typically used low-intensity resistance exercise protocol (16 minutes) with (85 Hz) and without WB-EMS. Using a crossover design, the same subjects performed both tests after completely recovering within 7 days. Energy expenditure as the primary endpoint of this study was determined by indirect calorimetry. The EE during low-intensity resistance exercise with adjuvant WB-EMS was significantly higher (p = 0.008) than that during the control condition (412 ± 60 vs. 352 ± 70 kcal; effect size; d = 0.92). This study clearly demonstrates the additive effect of WB-EMS on EE in moderately trained subjects during low-intensity resistance exercise training. Although this effect was statistically significant, the fast and significant reductions of body fat observed in recent studies suggest that the effect of WB-EMS on EE may still be underestimated by indirect calorimetry because of the inability of indirect calorimetry to accurately assess EE during "above-steady state conditions." Although from a statistically point of view WB-EMS clearly impacts EE, the relatively small effect did not suggest a broad application of this device in this area. However, taking other positive outcomes of this technology into account, WB-EMS may be a time-saving option at least for subjects unwilling or unable to exercise conventionally.  相似文献   

17.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.  相似文献   

18.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in the obese Zucker rat, a widely used rodent model of obesity-associated insulin resistance, and in insulin-resistant humans with impaired glucose tolerance or Type 2 diabetes. A single bout of prolonged aerobic exercise (30-60 min at approximately 60-70% of maximal oxygen consumption) can significantly lower plasma glucose levels, owing to normal contraction-induced stimulation of GLUT-4 glucose transporter translocation and glucose transport activity in insulin-resistant skeletal muscle. However, little is currently known about the effects of acute exercise on muscle insulin signaling in the postexercise state in insulin-resistant individuals. A well-established adaptive response to exercise training in conditions of insulin resistance is improved glucose tolerance and enhanced skeletal muscle insulin sensitivity of glucose transport. This training-induced enhancement of insulin action is associated with upregulation of specific components of the glucose transport system in insulin-resistant muscle and includes increased protein expression of GLUT-4 and insulin receptor substrate-1. It is clear that further investigations are needed to further elucidate the specific molecular mechanisms underlying the beneficial effects of acute exercise and exercise training on the glucose transport system in insulin-resistant mammalian skeletal muscle.  相似文献   

19.
The objectives of this study were to 1) identify the independent effects of exercise (aerobic or resistance training) and weight loss on whole body insulin sensitivity and 2) determine if aerobic or resistance training would be more successful for maintaining improved whole body insulin sensitivity 1 yr following weight loss. Subjects were 97 healthy, premenopausal women, body mass index (BMI) 27-30 kg/m(2). Following randomized assignment to one of three groups, diet only, diet + aerobic, or diet + resistance training until a BMI <25 kg/m(2) was achieved, body composition, fat distribution, and whole body insulin sensitivity were determined at baseline, in the weight reduced state, and at 1-yr follow up. The whole body insulin sensitivity index (S(I)) was determined using a frequently sampled intravenous glucose tolerance test. Results of repeated-measures ANOVA indicated a significant improvement in S(I) following weight loss. However, there were no group or group×time interactions. At 1-yr follow up, there were no significant time or group interactions for S(I;) however, there was a significant group×time interaction for S(I). Post hoc analysis revealed that women in the aerobic training group showed a significant increased S(I) from weight reduced to 1-yr follow up (P < 0.05), which was independent of intra-abdominal adipose tissue and %fat. No significant differences in S(I) from weight reduced to 1-yr follow up were observed for diet only or diet + resistance groups. Additionally, multiple linear regression analysis revealed that change in whole body insulin sensitivity from baseline to 1-yr follow up was independently associated with the change in Vo(2max) from baseline to 1-yr follow up (P < 0.05). These results suggest that long-term aerobic exercise training may conserve improvements in S(I) following weight loss and that maintaining cardiovascular fitness following weight loss may be important for maintaining improvements in S(I).  相似文献   

20.
Treatment of primary cultured adipocytes with 50 ng/ml insulin and 20 mM glucose for 0-6 h resulted in a loss of maximal insulin responsiveness (MIR) which was immediate (no lag period), rapid (t1/2 of 3 h), linear, and extensive (80% of that seen at 24 h), whereas loss of insulin sensitivity from 0-24 h was slow (t1/2 = 8 h), extensive (insulin ED50 of 0.3 and 1.45 ng/ml at 2 and 24 h, respectively), and was preceded by an initial 2-h lag. Recovery of MIR and insulin sensitivity was assessed by inducing desensitization for various times from 2-24 h, removing insulin and glucose, and then measuring MIR and insulin sensitivity over a subsequent 1-6-h period. After 2 h, recovery of MIR in desensitized cells was rapid (251 pmol of glucose/3 min/h), whereas after 24 h, recovery was much slower (35 pmol/3 min/h). In contrast, the opposite trend was seen for recovery of insulin sensitivity: at early times recovery of insulin sensitivity was slow (0.05 ng/ml/h) but was rapid after 24 h (0.12 ng/ml/h). Thus, it appears that MIR and insulin sensitivity can be independently regulated since recovery rates for MIR and insulin sensitivity diverged with the progression of insulin resistance. When the effects of insulin and glucose on recovery were examined, we found that insulin alone was unable to block recovery of MIR or insulin sensitivity. Glucose alone, however, was effective in preventing recovery of insulin sensitivity but not recovery of MIR. In the presence of 20 mM glucose, low doses of insulin (treatment EC50 = 0.22-0.46 ng/ml) effectively prevented recovery of both MIR and insulin sensitivity. De novo protein synthesis apparently is not involved in the development of insulin resistance or the reversal of desensitization since inhibition of protein synthesis by cycloheximide had no effect on the loss of MIR and insulin sensitivity or recovery.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号