首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells contain a variety of cytoplasmic Ca2+-dependent and Ca2+-independent phospholipase A2s (PLA2s; EC 2.3.1.2.3). However, the physiological roles for many of these ubiquitously-expressed enzymes is unclear or not known. Recently, pharmacological studies have suggested a role for Ca2+-independent PLA2 (iPLA2) enzymes in governing intracellular membrane trafficking events in general and regulating brefeldin A (BFA)-stimulated membrane tubulation and Golgi-to-endoplasmic reticulum (ER) retrograde membrane trafficking, in particular. Here, we extend these studies to show that membrane-permeant iPLA2 antagonists potently inhibit the normal, constitutive retrograde membrane trafficking from the trans -Golgi network (TGN), Golgi complex, and the ERGIC-53-positive ER-Golgi-intermediate compartment (ERGIC), which occurs in the absence of BFA. Taken together, these results suggest that iPLA2 enzymes play a general role in regulating, or directly mediating, multiple mammalian membrane trafficking events.  相似文献   

2.
In cells treated with brefeldin A (BFA), movement of newly synthesized membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Surprisingly, the glycoproteins retained in the ER were rapidly processed by cis/medial Golgi enzymes but not by trans Golgi enzymes. An explanation for these observations was provided from morphological studies at both the light and electron microscopic levels using markers for the cis/medial and trans Golgi. They revealed a rapid and dramatic redistribution to the ER of components of the cis/medial but not the trans Golgi in response to treatment with BFA. Upon removal of BFA, the morphology of the Golgi apparatus was rapidly reestablished and proteins normally transported out of the ER were efficiently and rapidly sorted to their final destinations. These results suggest that BFA disrupts a dynamic membrane-recycling pathway between the ER and cis/medial Golgi, effectively blocking membrane transport out of but not back to the ER.  相似文献   

3.
The endoplasmic reticulum-Golgi intermediate compartment (ERGIC) is the site of segregation of secretory proteins for anterograde transport, via packaging into COPII-coated transport vesicles. ERGIC-53 is a homo-hexameric transmembrane lectin localized to the ERGIC that exhibits mannose-selective properties in vitro. Null mutations in ERGIC-53 were recently shown to be responsible for the autosomal recessive bleeding disorder, combined deficiency of coagulation factors V and VIII. We have studied the effect of defective ER to Golgi cycling by ERGIC-53 on the secretion of factors V and VIII. The secretion efficiency of factor V and factor VIII was studied in a tetracycline-inducible HeLa cell line overexpressing a wild-type ERGIC-53 or a cytosolic tail mutant of ERGIC-53 (KKAA) that is unable to exit the ER due to mutation of two COOH-terminal phenylalanine residues to alanines. The results show that efficient trafficking of factors V and VIII requires a functional ERGIC-53 cycling pathway and that this trafficking is dependent on post-translational modification of a specific cluster of asparagine (N)-linked oligosaccharides to a fully glucose-trimmed, mannose9 structure.  相似文献   

4.
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.  相似文献   

5.
Phospholipase A(2) isoforms: a perspective   总被引:7,自引:0,他引:7  
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications.The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases.The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.  相似文献   

6.
K L Brown  M M Chu  L L Ingraham 《Biochemistry》1976,15(7):1402-1407
Phenacylcobalamin has been synthesized and characterized by thin-layer chromatography and uv-visible spectroscopy, as well as identification of the cobalt-containing and organic products of its cleavage in acid and base and by aerobic photolysis. The major organic product from all three cleavage reactions is acetophenone and the cobalt-containing product is aquacobalamin (or hydroxocobalamin, its conjugate base). In aqueous acidic solution (pH 0 to 7.3, ionic strength 1.0 M, and 25.0 degrees C), the kinetics of the formation of aquacobalamin are biphasic representing the linear sum of two exponential terms. The pH dependence of the first-order rate constant of both phases shows a first-order dependence on proton concentration but with an inflection point ot pH 3.55 for the faster phase and at pH 4.03 for the slower phase. This behavior is interpreted in terms of the specific acid catalyzed formation of an intermediate from both "base on" and "base off" phenacylcobalamin with different second-order rate constants for each form, followed by an intermediate decompotion step with a similar formal mechanism. The nature of the intermediate is discussed and it is concluded to be a pi-complex between cob(III)alamin and the enol of acetophenone.  相似文献   

7.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

8.
Lipid peroxidation of membrane phospholipids can proceed both enzymatically via the mammalian 15-lipoxygenase-1 or the NADPH-cytochrome P-450 reductase system and non-enzymatically. In some cells, such as reticulocytes, this process is biologically programmed, whereas in the majority of biological systems lipid peroxidation is a deleterious process that has to be repaired via a deacylation-reacylation cycle of phospholipid metabolism. Several reports in the literature pinpoint a stimulation by lipid peroxidation of the activity of secretory phospholipase A(2)s (mainly pancreatic and snake venom enzymes) which was originally interpreted as a repair function. However, recent experiments from our laboratory have demonstrated that in mixtures of lipoxygenated and native phospholipids the former are not preferably cleaved by either secretory or cytosolic phospholipase A(2)s. We propose that the platelet activating factor (PAF) acetylhydrolases of type II, which cleave preferentially peroxidised or lipoxygenated phospholipids, are competent for the phospholipid repair, irrespective of their role in PAF metabolism. A corresponding role of Ca(2+)-independent phospholipase A(2), which has been proposed to be involved in phospholipid remodelling in biomembranes, has not been addressed so far. Direct and indirect 15-lipoxygenation of phospholipids in biomembranes modulates cell signalling by several ways. The stimulation of phospholipase A(2)-mediated arachidonic acid release may constitute an alternative route of the arachidonic acid cascade. Thus, 15-lipoxygenase-mediated oxygenation of membrane phospholipids and its interaction with phospholipase A(2)s may play a crucial role in the pathogenesis of diseases, such as bronchial asthma and atherosclerosis.  相似文献   

9.
The classical regard of lipid droplets as mere static energy-storage organelles has evolved dramatically. Nowadays these organelles are known to participate in key processes of cell homeostasis, and their abnormal regulation is linked to several disorders including metabolic diseases (diabetes, obesity, atherosclerosis or hepatic steatosis), inflammatory responses in leukocytes, cancer development and neurodegenerative diseases. Hence, the importance of unraveling the cell mechanisms controlling lipid droplet biosynthesis, homeostasis and degradation seems evident. Phospholipase A2s, a family of enzymes whose common feature is to hydrolyze the fatty acid present at the sn-2 position of phospholipids, play pivotal roles in cell signaling and inflammation. These enzymes have recently emerged as key regulators of lipid droplet homeostasis, regulating their formation at different levels. This review summarizes recent results on the roles that various phospholipase A2 forms play in the regulation of lipid droplet biogenesis under different conditions. These roles expand the already wide range of functions that these enzymes play in cell physiology and pathophysiology.  相似文献   

10.
Endoplasmic reticulum (ER) quality control (ERQC) components retain and degrade misfolded proteins, and our results have found that the degradation of the soluble ERQC substrates CPY* and PrA* but not membrane spanning ERQC substrates requires transport between the ER and Golgi. Stabilization of these misfolded soluble proteins was seen in cells lacking Erv29p, a probable Golgi localized protein that cycles through the ER by means of a di-lysine ER retrieval motif (KKKIY). Cells lacking Erv29p also displayed severely retarded ER exit kinetics for a subset of correctly folded proteins. We suggest that Erv29p is likely involved in cargo loading of a subset of proteins, including soluble misfolded proteins, into vesicles for ER exit. The stabilization of soluble ERQC substrates in both erv29Delta cells and sec mutants blocked in either ER exit (sec12) or vesicle delivery to the Golgi (sec18) suggests that ER-Golgi transport is required for ERQC and reveals a new aspect of the degradative mechanism.  相似文献   

11.
Recent pharmacological studies using specific antagonists of phospholipase A(2) (PLA(2)) activity have suggested that the formation of Golgi membrane tubules, 60-80 nm in diameter and up to several microns long, both in vivo and in a cell-free cytosol-dependent reconstitution system, requires the activity of a cytoplasmic Ca(2+)-independent PLA(2). We confirm and extend these studies by demonstrating that the stimulators of PLA(2), melittin and PLA(2) activating protein peptide (PLAPp), enhance cytosol-dependent Golgi membrane tubulation. Starting with preparations of bovine brain cytosol (BBC), or a fraction of BBC that is highly enriched in tubulation activity, called the gel filtration (GF) fraction, that are at subsaturating concentrations for inducing tubulation in vitro, we found that increasing concentrations of melittin or PLAPp produced a linear and saturable stimulation of Golgi membrane tubulation. This stimulation was inhibited by cytosolic PLA(2) antagonists, including the Ca(2+)-independent PLA(2)-specific antagonist, bromoenol lactone. The stimulatory effect of PLAPp, and its inhibition by PLA(2) antagonists, was reproduced using a permeabilized cell system, which reconstitutes both cytosol-dependent Golgi membrane tubulation and retrograde trafficking to the endoplasmic reticulum (ER). Taken together, these results are consistent with the idea that cytosolic PLA(2) activity is involved in the formation of Golgi membrane tubules, which can serve as trafficking intermediates in Golgi-to-ER retrograde movement.  相似文献   

12.
Phospholipase A(2) regulation of arachidonic acid mobilization   总被引:9,自引:0,他引:9  
Phospholipase A(2) (PLA(2)) constitutes a growing superfamily of lipolytic enzymes, and to date, at least 19 distinct enzymes have been found in mammals. This class of enzymes has attracted considerable interest as a pharmacological target in view of its role in lipid signaling and its involvement in a variety of inflammatory conditions. PLA(2)s hydrolyze the sn-2 ester bond of cellular phospholipids, producing a free fatty acid and a lysophospholipid, both of which are lipid signaling molecules. The free fatty acid produced is frequently arachidonic acid (AA, 5,8,11,14-eicosatetraenoic acid), the precursor of the eicosanoid family of potent inflammatory mediators that includes prostaglandins, thromboxanes, leukotrienes and lipoxins. Multiple PLA(2) enzymes are active within and surrounding the cell and these enzymes have distinct, but interconnected roles in AA release.  相似文献   

13.
14.
15.
The phospholipases A(2) (PLA(2)s) are a large family of enzymes with varied lipidic products which are involved in numerous signal transduction pathways. The structural and functional characterization of several PLA(2)s have revealed the various mechanisms used by these enzymes to ingeniously manipulate the phospholipidic metabolic machinery.  相似文献   

16.
Although membrane tubules can be found extending from, and associated with, the Golgi complex of eukaryotic cells, their physiological function has remained unclear. To gain insight into the biological significance of membrane tubules, we have developed methods for selectively preventing their formation. We show here that a broad range of phospholipase A2 (PLA2) antagonists not only arrest membrane tubule-mediated events that occur late in the assembly of the Golgi complex but also perturb its normal steady-state tubulovesicular architecture by inducing a reversible fragmentation into separate "mini-stacks." In addition, we show that these same compounds prevent the formation of membrane tubules from Golgi stacks in an in vitro reconstitution system. This in vitro assay was further used to demonstrate that the relevant PLA2 activity originates from the cytoplasm. Taken together, these results demonstrate that Golgi membrane tubules, sensitive to potent and selective PLA2 antagonists, mediate both late events in the reassembly of the Golgi complex and the dynamic maintenance of its steady-state architecture. In addition, they implicate a role for cytoplasmic PLA2 enzymes in mediating these membrane trafficking events.  相似文献   

17.
We have isolated and characterized a dimer derivative of the extensively studiedEscherichia coli insertion sequence IS2. The dimer structure — called (IS2)2 — consists of two IS2 elements arranged as a direct repeat, separated by 1 bp. The junction between the (IS2)2 dimer and target sequences is located at various positions in independent isolates; however, one position was preferred. The transposition of (IS2)2 into a target plasmid resulted in cointegrate-type structures. The transposition frequency of the (IS2)2 dimer itself was significantly higher than that of the isogenic monomer IS2 insertion. The poor stability and high activity of (IS2)2 indicates that this is an active transposition intermediate. The mode of transposition of (IS2)2 is analogous to the joined dimer model described in the case of (IS21)2 and (IS30)2.  相似文献   

18.
Transport carriers operating between early compartments in the mammalian secretory pathway have to travel long distances in the cell by mostly relying on the microtubule network and its associated motor proteins. Although anterograde transport from the endoplasmic reticulum (ER) to the Golgi complex is mediated by cytoplasmic dynein, the identity of the motor(s) mediating transport in the retrograde direction is presently unclear. Some studies have suggested that the heterotrimeric kinesin-2 complex plays a role in transport between the ER and the Golgi. Here, we have examined kinesin-2 function by using an RNA-interference approach to downregulate the expression of KAP3, the nonmotor subunit of kinesin-2, in HeLa cells. KAP3 silencing results in the fragmentation of the Golgi apparatus and a change in the steady-state localization of the KDEL-receptor (KDEL-R). Using specific transport assays, we show that the rate of anterograde secretory traffic is unaffected in these cells but that KDEL-R-dependent retrograde transport is strongly abrogated. Our data strongly support a role for kinesin-2 in the KDEL-R-/COPI-dependent retrograde transport pathway from the Golgi complex to the ER.  相似文献   

19.
Tateishi Y  Abe T  Tamogami J  Nakao Y  Kikukawa T  Kamo N  Unno M 《Biochemistry》2011,50(12):2135-2143
Sensory rhodopsin II is a seven transmembrane helical retinal protein and functions as a photoreceptor protein in negative phototaxis of halophilic archaea. Sensory rhodopsin II from Natronomonas pharaonis (NpSRII) is stable under various conditions and can be expressed functionally in Escherichia coli cell membranes. Rhodopsins from microorganisms, known as microbial rhodopsins, exhibit a photocycle, and light irradiation of these molecules leads to a high-energy intermediate, which relaxes thermally to the original pigment after passing through several intermediates. For bacteriorhodopsin (BR), a light-driven proton pump, the photocycle is established as BR → K → L → M → N → O → BR. The photocycle of NpSRII is similar to that of BR except for N, i.e., M thermally decays into the O, and N has not been well characterized in the photocycle. Thus we here examined the second half of the photocycle in NpSRII, and in the present transient absorption study we found the formation of a new photointermediate whose absorption maximum is ~500 nm. This intermediate becomes pronounced in the presence of azide, which accelerates the decay of M. Transient resonance Raman spectroscopy was further applied to demonstrate that this intermediate contains a 13-cis retinal protonated Schiff base. However, detailed analysis of the transient absorption data indicated that M-decay does not directly produce N but rather produces O that is in equilibrium with N. These observations allowed us to propose a structural model for a photocycle that involves N.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号