首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have established a role for cytoplasmic phospholipase A(2) (PLA(2)) activity in tubule-mediated retrograde trafficking between the Golgi complex and the endoplasmic reticulum (ER). However, little else is known about how membrane tubule formation is regulated. This study demonstrates that isotetrandrine (ITD), a biscoclaurine alkaloid known to inhibit PLA(2) enzyme activation by heterotrimeric G-proteins, effectively prevented brefeldin A (BFA)-induced tubule formation from the Golgi complex and retrograde trafficking to the ER. In addition, ITD inhibited BFA-stimulated tubule formation from the trans-Golgi network and endosomes. ITD inhibition of the BFA response was potent (IC(50) approximately 10-20 microM) and rapid (complete inhibition with a 10-15-min preincubation). ITD also inhibited normal retrograde trafficking as revealed by the formation of nocodazole-induced Golgi mini-stacks at ER exit sites. Treatment of cells with ITD alone caused the normally interconnected Golgi ribbons to become fragmented and dilated, but cisternae were still stacked and located in a juxtanuclear position. These results suggest that a G-protein-binding PLA(2) enzyme plays a pivotal role in tubule mediated trafficking between the Golgi and the ER, the maintenance of the interconnected ribbons of Golgi stacks, and tubule formation from endosomes.  相似文献   

2.
Insights into the function of the Golgi complex have been provided by experiments performed with various inhibitors of membrane trafficking, such as the macrocyclic lactone brefeldin A (BFA), a compound that inhibits constitutive secretion, prevents the formation of coatomer-coated transport vesicles, and stimulates the retrograde movement of Golgi resident enzymes back to the ER. We show here that the structurally unrelated compound clofibrate, a peroxisome proliferator (PP) and hypolipidemic agent, also reversibly disrupts the morphological and functional integrity of the Golgi complex in a manner similar to BFA. In the presence of clofibrate, the forward transport of newly synthesized secretory proteins from the ER to the Golgi is dramatically inhibited. Moreover, clofibrate causes Golgi membranes to travel rapidly in a microtubule-dependent manner back to the ER, forming a hybrid ER–Golgi tubulovesicular membrane network. These affects appear to be independent of clofibrate's ability to stimulate the PP-activated receptor (PPAR) alpha pathway because other PPAR stimulators (DEHP, WY-14643) did not alter the Golgi complex or induce retrograde trafficking. These data suggest that PPAR alpha-independent, clofibrate-sensitive proteins participate in regulating Golgi-to-ER retrograde membrane transport, and, equally importantly, that clofibrate may be used as a pharmacological tool for investigating Golgi membrane dynamics.  相似文献   

3.
Mepanipyrim inhibited retrograde Golgi-to-ER trafficking induced by brefeldin A (BFA), nordihydroguaiaretic acid, clofibrate, and arachidonyltrifluoromethyl ketone in NRK and other types of cells, but did not inhibit anterograde trafficking of Golgi-resident proteins translocated to ER by BFA and newly synthesized VSV-G. However, mepanipyrim did not block the TGN38 dispersion induced by any of these compounds. Mepanipyrim acted on the Golgi, and swollen vesicular Golgi structures were formed and similar structures accumulated during rebuilding of the Golgi after BFA removal. These actions of mepanipyrim were readily reversed after its removal. Mepanipyrim did not stabilize microtubules, but prevented nocodazole-induced fragmentation and dispersion of the Golgi. These results suggest that the mepanipyrim-sensitive molecules participated in stabilizing the Golgi and its anchoring in the perinuclear region, and equally importantly, that the novel action of mepanipyrim may be used as a pharmacological tool for investigating membrane transport, Golgi membrane dynamics, and differentiation of the Golgi from TGN.  相似文献   

4.
Recent pharmacological studies using specific antagonists of phospholipase A(2) (PLA(2)) activity have suggested that the formation of Golgi membrane tubules, 60-80 nm in diameter and up to several microns long, both in vivo and in a cell-free cytosol-dependent reconstitution system, requires the activity of a cytoplasmic Ca(2+)-independent PLA(2). We confirm and extend these studies by demonstrating that the stimulators of PLA(2), melittin and PLA(2) activating protein peptide (PLAPp), enhance cytosol-dependent Golgi membrane tubulation. Starting with preparations of bovine brain cytosol (BBC), or a fraction of BBC that is highly enriched in tubulation activity, called the gel filtration (GF) fraction, that are at subsaturating concentrations for inducing tubulation in vitro, we found that increasing concentrations of melittin or PLAPp produced a linear and saturable stimulation of Golgi membrane tubulation. This stimulation was inhibited by cytosolic PLA(2) antagonists, including the Ca(2+)-independent PLA(2)-specific antagonist, bromoenol lactone. The stimulatory effect of PLAPp, and its inhibition by PLA(2) antagonists, was reproduced using a permeabilized cell system, which reconstitutes both cytosol-dependent Golgi membrane tubulation and retrograde trafficking to the endoplasmic reticulum (ER). Taken together, these results are consistent with the idea that cytosolic PLA(2) activity is involved in the formation of Golgi membrane tubules, which can serve as trafficking intermediates in Golgi-to-ER retrograde movement.  相似文献   

5.
6.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

7.
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH2-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.  相似文献   

8.
Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.  相似文献   

9.
Recent evidence suggests a regulatory connection between cell volume, endoplasmic reticulum (ER) export, and stimulated Golgi-to-ER transport. To investigate the potential role of protein kinases we tested a panel of protein kinase inhibitors for their effect on these steps. One inhibitor, H89, an isoquinolinesulfonamide that is commonly used as a selective protein kinase A inhibitor, blocked both ER export and hypo-osmotic-, brefeldin A-, or nocodazole-induced Golgi-to-ER transport. In contrast, H89 did not block the constitutive ER Golgi-intermediate compartment (ERGIC)-to-ER and Golgi-to-ER traffic that underlies redistribution of ERGIC and Golgi proteins into the ER after ER export arrest. Surprisingly, other protein kinase A inhibitors, KT5720 and H8, as well as a set of protein kinase C inhibitors, had no effect on these transport processes. To test whether H89 might act at the level of either the coatomer protein (COP)I or the COPII coat protein complex we examined the localization of betaCOP and Sec13 in H89-treated cells. H89 treatment led to a rapid loss of Sec13-labeled ER export sites but betaCOP localization to the Golgi was unaffected. To further investigate the effect of H89 on COPII we developed a COPII recruitment assay with permeabilized cells and found that H89 potently inhibited binding of exogenous Sec13 to ER export sites. This block occurred in the presence of guanosine-5'-O-(3-thio)triphosphate, suggesting that Sec13 recruitment is inhibited at a step independent of the activation of the GTPase Sar1. These results identify a requirement for an H89-sensitive factor(s), potentially a novel protein kinase, in recruitment of COPII to ER export sites, as well as in stimulated but not constitutive Golgi-to-ER transport.  相似文献   

10.
Chlamydia trachomatis (Ctr), an obligate intracellular bacterium, survives and replicates within a membrane‐bound vacuole, termed the inclusion, which intercepts host exocytic pathways to acquire nutrients. Ctr subverts cellular trafficking pathways from the Golgi by targeting small GTPases, including Rab proteins, to sustain intracellular bacterial replication; however, the precise mechanisms involved remain incompletely understood. Here, we show that Chlamydia infection in human epithelial cells induces microtubule remodeling, in particular the formation of detyrosinated stable MTs, to recruit Golgi ministacks, but not recycling endosomes, to the inclusion. These stable microtubules show increased resistance to chemically induced depolymerization, and their selective depletion results in reduced bacterial infectivity. Rab6 knockdown reversibly prevented not only Golgi ministack formation but also detyrosinated microtubule association with the inclusion. Our data demonstrate that Chlamydia co‐opts the function of stable microtubules to support its development.  相似文献   

11.
Yeast Ypt6p, the homologue of the mammalian Rab6 GTPase, is not essential for cell viability. Based on previous studies with ypt6 deletion mutants, a regulatory role of the GTPase either in protein retrieval to the trans-Golgi network or in forward transport between the endoplasmic reticulum (ER) and early Golgi compartments was proposed. To assess better the primary role(s) of Ypt6p, temperature-sensitive ypt6 mutants were generated and analyzed biochemically and genetically. Defects in N-glycosylation of proteins passing the Golgi and of Golgi-resident glycosyltransferases as well as protein sorting defects in the trans-Golgi were recorded shortly after functional loss of Ypt6p. ER-to-Golgi transport and protein secretion were delayed but not interrupted. Mis-sorting of the vesicular SNARE Sec22p to the late Golgi was also observed. Combination of the ypt6-2 mutant allele with a number of mutants in forward and retrograde transport between ER, Golgi, and endosomes led to synthetic negative growth defects. The results obtained indicate that Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking.  相似文献   

12.
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.  相似文献   

13.
Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural approaches. After microtubule depolymerization, Golgi membrane components were found to redistribute to a distinct number of peripheral sites that were not randomly distributed, but corresponded to sites of protein exit from the ER. Whereas Golgi enzymes redistributed gradually over several hours to these peripheral sites, ERGIC-53 (a protein which constitutively cycles between the ER and Golgi) redistributed rapidly (within 15 minutes) to these sites after first moving through the ER. Prior to this redistribution, Golgi enzyme processing of proteins exported from the ER was inhibited and only returned to normal levels after Golgi enzymes redistributed to peripheral ER exit sites where Golgi stacks were regenerated. Experiments examining the effects of microtubule disruption on the membrane pathways connecting the ER and Golgi suggested their potential role in the dispersal process. Whereas clustering of peripheral pre-Golgi elements into the centrosomal region failed to occur after microtubule disruption, Golgi-to-ER membrane recycling was only slightly inhibited. Moreover, conditions that impeded Golgi-to-ER recycling completely blocked Golgi fragmentation. Based on these findings we propose that a slow but constitutive flux of Golgi resident proteins through the same ER/Golgi cycling pathways as ERGIC-53 underlies Golgi Dispersal upon microtubule depolymerization. Both ERGIC-53 and Golgi proteins would accumulate at peripheral ER exit sites due to failure of membranes at these sites to cluster into the centrosomal region. Regeneration of Golgi stacks at these peripheral sites would re-establish secretory flow from the ER into the Golgi complex and result in Golgi dispersal.  相似文献   

14.
Brefeldin A (BFA) has been reported to block protein transport from the ER and cause disassembly of the Golgi complex. We have examined the effects of BFA on the transport and processing of the vesicular stomatitis virus G protein, a model integral membrane protein. Delivery of G protein to the cell surface was reversibly blocked by 6 micrograms/ml BFA. Pulse-label experiments revealed that in the presence of BFA, G protein became completely resistant to endoglycosidase H digestion. Addition of sialic acid, a trans-Golgi event, was not observed. Despite processing by cis- and medial Golgi enzymes, G protein was localized by indirect immunofluorescence to a reticular distribution characteristic of the ER. By preventing transport of G protein from the ER with the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or by use of the temperature-sensitive mutant ts045, which is restricted to the ER at 40 degrees C, we showed that processing of G protein occurred in the ER and was not due to retention of newly synthesized Golgi enzymes. Rather, redistribution of preexisting cis and medial Golgi enzymes to the ER occurred as soon as 2.5 min after addition of BFA, and was complete by 10-15 min. Delivery of Golgi enzymes to the ER was energy dependent and occurred only at temperatures greater than or equal to 20 degrees C. BFA also induced retrograde transport of G protein from the medial Golgi to the ER. Golgi enzymes were completely recovered from the ER 10 min after removal of BFA. These findings demonstrate that BFA induces retrograde transport of both resident and itinerant Golgi proteins to the ER in a fully reversible manner.  相似文献   

15.
Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of betaCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.  相似文献   

16.
Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP) neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.  相似文献   

17.
Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent.  相似文献   

18.
The role of cis-medial Golgi matrix proteins in retrograde traffic is poorly understood. We have used imaging techniques to understand the relationship between the cis-medial Golgi matrix and transmembrane proteins during retrograde traffic in control and brefeldin A (BFA)-treated cells. All five of the cis-medial matrix proteins tested were associated with retrograde tubules within 2-3 min of initiation of tubule formation. Then, at later time points (3-10 min), transmembrane proteins are apparent in the same tubules. Strikingly, both the matrix proteins and the transmembrane proteins moved directly to endoplasmic reticulum (ER) exit sites labeled with p58 and Sec13, and there seemed to be a specific interaction between the ER exit sites and the tips or branch points of the tubules enriched for the matrix proteins. After the initial interaction, Golgi matrix proteins accumulated rapidly (5-10 min) at ER exit sites, and Golgi transmembrane proteins accumulated at the same sites approximately 2 h later. Our data suggest that Golgi cis-medial matrix proteins participate in Golgi-to-ER traffic and play a novel role in tubule formation and targeting.  相似文献   

19.
Dong C  Wu G 《Cellular signalling》2007,19(11):2388-2399
Three Rab GTPases, Rab1, Rab2 and Rab6, are involved in protein transport between the endoplasmic reticulum (ER) and the Golgi. Whereas Rab1 regulates the anterograde ER-to-Golgi transport, Rab2 and Rab6 coordinate the retrograde Golgi-to-ER transport. We have previously demonstrated that Rab1 differentially modulates the export trafficking of distinct G protein-coupled receptors (GPCRs). In this report, we determined the role of Rab2 and Rab6 in the cell-surface expression and signaling of alpha(2B)-adrenergic (alpha(2B)-AR), beta(2)-AR and angiotensin II type 1 receptors (AT1R). Expression of the GTP-bound mutant Rab2Q65L significantly attenuated the cell-surface expression of both alpha(2B)-AR and beta(2)-AR, whereas the GTP-bound mutant Rab6Q72L selectively inhibited the transport of beta(2)-AR, but not alpha(2B)-AR. Similar results were obtained by siRNA-mediated selective knockdown of endogenous Rab2 and Rab6. Consistently, Rab2Q65L and Rab2 siRNA inhibited alpha(2B)-AR and beta(2)-AR signaling measured as ERK1/2 activation and cAMP production, respectively, whereas Rab6Q72L and Rab6 siRNA reduced signaling of beta(2)-AR, but not alpha(2B)-AR. Similar to the beta(2)-AR, AT1R expression at the cell surface and AT1R-promoted inositol phosphate accumulation were inhibited by Rab6Q72L. Furthermore, the nucleotide-free mutant Rab6N126I selectively attenuated the cell-surface expression of beta(2)-AR and AT1R, but not alpha(2B)-AR. These data demonstrate that Rab2 and Rab6 differentially influence anterograde transport and signaling of GPCRs. These data also provide the first evidence indicating that Rab6-coordinated retrograde transport selectively modulates intracellular trafficking and signaling of GPCRs.  相似文献   

20.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号