首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

2.
The performance of a new biosorbent system, consisting of a fungal biomass immobilized within an orange peel cellulose absorbent matrix, for the removal of Zn(2+) heavy metal ions from an aqueous solution was tested. The amount of Zn(II) ion sorption by the beads was as follows; orange peel cellulose with Phanerochaete chrysosporium immobilized Ca-alginate beads (OPCFCA) (168.61 mg/g) > orange peel cellulose immobilized Ca-alginate beads (OPCCA) (147.06 mg/g) > P. chrysosporium (F) (125.0 mg/g) > orange peel cellulose (OPC) (108.70 mg/g) > plain Ca-alginate bead (PCA) (98.26 mg/g). The Zn(2+) concentration was 100 to 1000 mg/L. The widely used Langmuir and Freundlich isotherm models were utilized to describe the biosorption equilibrium process. The isotherm parameters were estimated using linear and non-linear regression analysis. The Box-Behnken model was found to be in close agreement with the experimental values, as indicated by the correlation coefficient value of 0.9999.  相似文献   

3.
The characteristics of polyvinyl alcohol (PVA) and calcium alginate as immobilization matrices were examined and compared for the uptake of gold by a fungal biomass. PVA-immobilized biomass showed superior mechanical strength and chemical stability. In addition, PVA beads were also stable under a wider range of pH (1-13). The lower mass transfer resistance in PVA beads was evident from kinetic studies which showed a significantly shorter period of time for the immobilized PVA beads to achieve 80% gold removal as compared with immobilized alginate beads. Calculated rate constants and maximum rates for the uptake of gold by both immobilized PVA and immobilized alginate biosorbent revealed a much more rapid uptake phenomenon by the former. BET analyses also indicated a larger surface area and larger pore size distribution in PVA beads, further indicating a lower resistance to mass transfer. Gold biosorption in the immobilized PVA bead could be modeled by both the Langmuir and Freundlich adsorption isotherms.  相似文献   

4.
The aim of this study was to investigate the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles. The biomass was immobilized by various mechanisms and evaluated for removal of Cr(VI) from aqueous solution, mechanical stability to desorbents, and reuse in successive cycles. The finely powdered biomass, entrapped in five different polymeric matrices viz. calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysulfone was compared for biosorption efficiency and stability to desorbents. Physical immobilization to polyurethane foam and coir fiber was less efficient than polymer entrapment methods. Of the different combinations (%, w/v) of biomass dose compared for each matrix, 8% (calcium alginate), 6% (polyacrylamide and PVA), 12% (polyisoprene), and 10% (polysulfone) were found to be the optimum. The Cr sorption capacity (mg Cr/g sorbent) of all immobilized biomass was lesser than the native, powdered biomass. The Cr sorption capacity decreased in the order of free biomass (119.2) > polysulfone entrapped (101.5) > polyisoprene immobilized (98.76) > PVA immobilized (96.69) > calcium alginate entrapped (84.29) > polyacrylamide (45.56), at 500 mg/l concentration of Cr(VI). The degree of mechanical stability and chemical resistance of the immobilized systems were in the order of polysulfone > polyisoprene > PVA > polyacrylamide > calcium alginate. The bound Cr(VI) could be eluted successfully using 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data for the native and the immobilized biomass was evaluated by the Freundlich isotherm model. The successive sorption-desorption studies employing polysulfone entrapped biomass indicated that the biomass beads could be regenerated and reused in more than 25 cycles and the regeneration efficiency was 75-78%.  相似文献   

5.
Oh WD  Lim PE  Seng CE  Sujari AN 《Bioresource technology》2011,102(20):9497-9502
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.  相似文献   

6.
Aims:  Evaluation of various immobilization methods and bioreactors for sulfide oxidation using Thiobacillus sp. was studied.
Methods and Results:  Ca-alginate, K-carrageenan and agar gel matrices (entrapment) and polyurethane foam and granular activated carbon (adsorption) efficacy was tested for the sulfide oxidation and biomass leakage using immobilized Thiobacillus sp. Maximum sulfide oxidation of 96% was achieved with alginate matrix followed by K-carrageenan (88%). Different parameters viz. alginate concentration (1%, 2%, 3%, 4% and 5%), CaCl2 concentration (1%, 2%, 3%, 4% and 5%), bead diameter (1, 2, 3, 4 and 5 mm), and curing time (1, 3, 6, 12 and 18 h) were studied for optimal immobilization conditions. Repeated batch experiments were carried out to test reusability of Ca-alginate immobilized beads for sulfide oxidation in stirred tank reactor and fluidized bed reactor (FBR) at different sulfide concentrations.
Conclusions:  The results proved to be promising for sulfide oxidation using Ca-alginate gel matrix immobilized Thiobacillus sp. for better sulfide oxidation with less biomass leakage.
Significance and Impact of the Study:  Biological sulfide oxidation is gaining more importance because of its simple operation. Present investigations will help in successful design and operation of pilot and industrial level FBR for sulfide oxidation.  相似文献   

7.
用固定化弗劳地柠檬酸杆菌XP05从溶液中回收铂   总被引:1,自引:0,他引:1  
比较了5种固定弗劳地柠檬酸杆菌XP05菌体的方法,其中明胶海藻酸钠包埋法为固定菌体的最佳方法。扫描电子显微镜观察表明,XP05菌体较均匀地分布于包埋基质中。固定化XP05菌体吸附Pt4+受吸附时间、固定化菌体浓度、溶液的pH值和Pt4+起始浓度的影响。吸附作用是一个快速的过程;吸附Pt4+的最适pH值为1.5;在50~250 mg P4+/L范围内,吸附量与Pt4+起始浓度成线性关系,吸附过程符合Langmuir和Freundlich吸附等温模型。在Pt4+起始浓度250 mg/L、固定化菌体2.0 g/L、pH 1.5和30℃条件下,振荡吸附60 min, 吸附量为35.3 mg/g。0.5 mol/L HCl能使吸附在固定化菌体上的Pt解吸98.7%。从废铂催化剂处理液回收铂的结果表明,在Pt4+起始浓度111.8 mg/L、固定化菌体4.0 g/L、pH 1.5和30℃条件下,振荡吸附60 min, 吸附量为20.9 mg/g。在填充床反应器中,在Pt4+起始浓度50 mg/L、流速1.2 ml/min、固定化菌体1.86 g的条件下,饱和吸附量达24.7 mg/g; 固定化XP05菌体经4次吸附解吸循环后吸附率仍达78%。  相似文献   

8.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

9.
The ability of Ca-alginate immobilized Trichoderma harzianum has been explored for removal and recovery of uranium from aqueous streams. Ca-alginate as polymeric support was selected after screening different matrices. Immobilization of Trichoderma harzianum to Ca-alginate improved the stability as well as uranium biosorption capacity of biosorbent at 28 ± 2 °C and 200 rpm. The suitability of packed bed column operations was illustrated by obtaining break through curves at different bed heights, flow rates and inlet uranium concentrations. The adsorption column containing 1.5 g dry weight of immobilized material has purified 8.5 L of bacterial leach liquor (58 mg/L U) before break through occurred and the biosorbent became saturated after 25 L of influent. Sorbed uranium was recovered in 200 ml of 0.1 N HCl resulting in 98.1–99.3% elution by 0.1 N HCl, which regenerated the biosorbent facilitating the sorption–desorption cycles for better economic feasibility without any significant alteration in sorption capacity/elution efficiency.  相似文献   

10.
Trametes versicolor and Pleurotus sajur-caju mycelia immobilized in Ca-alginate beads were used for the removal of mercuric ions from aqueous solutions. The sorption of Hg(II) ions by alginate beads and both immobilized live and heat-killed fungal mycelia of T. versicolor and P. sajur-caju was studied in the concentration range of 0.150-3.00 mmol dm(-3). The biosorption of Hg(II) increased as the initial concentration of Hg(II) ions increased in the medium. Maximum biosorption capacities for plain alginate beads were 0.144+/-0.005 mmol Hg(II)/g; for immobilized live and heat-killed fungal mycelia of T. versicolor were 0.171+/-0.007 mmol Hg(II)/g and 0.383+/-0.012 mmol Hg(II)/g respectively; whereas for live and heat-killed P. sajur-caju, the values were 0.450+/-0.014 mmol Hg(II)/g and 0.660+/-0.019 mmol Hg(II)/g respectively. Biosorption equilibrium was established in about 1 h and the equilibrium adsorption was well described by Langmuir and Freundlich adsorption isotherms. Between 15 and 45 degrees C the biosorption capacity was not affected and maximum adsorption was observed between pH 4.0 and 6.0. The alginate-fungus beads could be regenerated using 10 mmol dm(-3) HCl solution, with up to 97% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Heat-killed T. versicolor and P. sajur-caju removed 73% and 81% of the Hg(II) ions, respectively, from synthetic wastewater samples.  相似文献   

11.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

12.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

13.
Adsorption studies were conducted to study the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution on palm pith carbon under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Higher 2,4-DCP was removed with decrease in the initial concentration of 2,4-DCP and increase in amount of adsorbent used. Kinetic study showed that the adsorption of 2,4-DCP on palm pith carbon was a gradual process. Adsorption capacities were 19.16 mg/g for the particle size of 250-500 microm. The equilibrium time was 60 and 80 min for 10 and 20 mg/L and 100 min for both 30 and 40 mg/L phenol concentrations, respectively. Acidic pH was favourable for the adsorption of 2,4-DCP. Studies on pH effect and desorption showed that chemisorption seemed to play a major role in the adsorption process. Thermodynamic study showed that adsorption of 2,4-DCP on palm pith carbon was more favoured. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of palm pith carbon was estimated as 30.72 J/mol/k and 7.16 kJ/mol, respectively. The high positive value of change in Gibbs free energy indicated the feasible and spontaneous adsorption of 2,4-DCP on palm pith carbon. The results indicated that palm pith carbon was an attractive candidate for removing phenols from wastewater.  相似文献   

14.
The immobilized Aspergillus niger powder beads were obtained by entrapping nonviable A. niger powder into Ca-alginate gel. The effects of pH, contact time, initial uranium (VI) concentration and biomass dosage on the biosorption of uranium (VI) onto the beads from aqueous solutions were investigated in a batch system. Biosorption equilibrium data were agreeable with Langmuir isotherm model and the maximum biosorption capacity of the beads for uranium (VI) was estimated to be 649.4?mg/g at 30?°C. The biosorption kinetics followed the pseudo-second-order model and intraparticle diffusion equation. The variations in enthalpy (26.45?kJ/mol), entropy (0.167?kJ/mol?K) and Gibbs free energy were calculated from the experimental data. SEM and EDS analysis indicated that the beads have strong adsorption capability for uranium (VI). The adsorbed uranium (VI) on the beads could be released with HNO3 or HCl. The results showed that the immobilized A. niger powder beads had great potential for removing and recovering uranium (VI) from aqueous solutions.  相似文献   

15.
The desorption characteristics of copper on biomass of a marine macroalga, Sargassum baccularia, immobilized in polyvinyl alcohol (PVA) gel beads, were investigated using HCl eluting solutions. Both the extent and the rate of desorption were affected by the pH of the eluent. Nearly 91% of the copper initially adsorbed was released back into an HCl solution at pH 1.0 after 40 min of contact time when apparent desorption equilibrium was achieved. When the pH was raised to 2.0, about 81% of the bound copper was desorbed within 120 min of contact time. Apparent desorption rate constants were determined using first‐order desorption models. Very high concentrations of copper in the eluate could be obtained by using small amounts of the HCl eluent. However, this was achieved at the expense of the desorption efficiency. The PVA‐immobilized seaweed biomass beads could be regenerated with HCl solution at pH 1.0 or 2.0 in multiple cycles of copper biosorption‐desorption. Following desorption at pH 1.0 in the first cycle, about 55% of the biosorption capacity of the virgin biomass could be reused in subsequent cycles; in the case of desorption at pH 2.0, about 67% of the original uptake capacity was reusable.  相似文献   

16.
ABSTRACT: BACKGROUND: The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. RESULTS: It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4[prime]-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 mumol/min/g dw of cells for immobilized catalyst vs 40.54 mumol/min/g for free cells in the asymmetric reduction of 4[prime]-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors eta < 1 and Thiele modulus 0.3<[empty set] <1. CONCLUSIONS: Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst.  相似文献   

17.
Among three esters of p-hydroxybenzoate, n-butyl p-hydroxybenzoate was selected as the best antimicrobial substance. Molasses medium sterilized by this ester was used as a substrate for ethanol production. n-Butyl p-hydroxybenzoate (0.15% w/v) completely inhibited the growth of free yeast cell inoculum, Ca-alginate immobilized yeast inoculum and bacterial contaminants. Immobilization of the yeast cell inoculum in Ca-alginate with castor oil (6% v/v) offered a yeast cell protection against the inhibitory effect of n-butyl p-hydroxybenzoate. The presence of castor oil in this immobilization system did not affect the metabolic activity of the yeast in beads compared to the cells immobilized without castor oil. The yeast cell beads in this system completely utilized up to 25% molasses sugar with an ethanol yield of 10.58%, equal to 83% of its theoretical value. The beads were stable and could be used successfully for seven cycles of batch fermentation. The optimum fermentation temperature using this system was 35°C. Received 21 January 1997/ Accepted in revised form 05 May 1997  相似文献   

18.
Studies were carried out on 4-aminobenzenesulfonate (4-ABS) degradation by free and alginate entrapped cells of Agrobacterium sp. PNS-1. Degradation rate in batch reactors with free cells was marginally higher than Ca-encapsulated cells. Comparison of Ca2+ and Ba2+ as gelling agents showed that 4-ABS removal rate was significantly less with Ba-alginate entrapped cells. Specific degradation rates, using linear regression analysis and based on the initial biomass in the beads, varied from 49.7 mg/mg biomass/h to 92.0 mg/mg biomass/h for Ca-alginate encapsulated cells for different initial 4-ABS concentrations ranging from 200 to 800 mg/L. UV spectra of the aliquots drawn at different time intervals from batch reactors did not show accumulation of any intermediate during degradation. Ca-alginate immobilized cells could be repeatedly reused upto five cycles without any loss of activity. Studies with packed bed reactors, operated in a semi-continuous mode, showed that this could be used for 4-ABS degradation.  相似文献   

19.
Thermoalkalophilic esterase enzyme from Bal?ova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization.  相似文献   

20.
AIMS: The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. METHODS AND RESULTS: The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. CONCLUSIONS: The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号