首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full-length cDNA clone for GTP cyclohydrolase I (EC 3.5.4.16) was isolated from a Tetrahymena pyriformis cDNA library by plaque hybridization. The nucleotide sequence determination revealed that the length of the cDNA insert was 1516 bp. The coding region encoded a protein of 223 amino acid residues with a calculated molecular mass of 25 416 Da. The deduced amino acid sequence of Tetrahrymena GTP cyclohydrolase I showed sequence identity with that of Escherichia coli (55%). The identity of T. pyriformis GTP cyclohydrolase I with sequences of Dictyostelium discoideum, Saccharomyces cerevisiae, Drosophila melanogaster, mouse, rat, and human enzymes was less marked and was 30, 30, 25, 28, 28, and 27%, respectively. RNA blot analysis showed a single mRNA species of 2.1 kb in this protozoan. The mRNA level of GTP cyclohydrolase I increased during synchronous cell division induced by intermittent heat treatment. The results suggest that the mRNA expression is associated with the cell cycle of T. pyriformis.  相似文献   

2.
A GTP cyclohydrolase II-encoding gene from Arabidopsis thaliana was isolated through functional complementation of a mutant of Escherichia coli, BSV18, deficient in this protein. The derived amino-acid sequence constitutes a polypeptide of 27 kDa and shows 37–58% identity with previously published sequences of Escherichia coli, Bacillus subtilis, Photobacterium leiognathi and P. phosphoreum.  相似文献   

3.
4.
Amino-acid and cDNA nucleotide sequences of human Clara cell 10 kDa protein   总被引:9,自引:0,他引:9  
A human lung cDNA expression library was screened by using a rabbit antiserum specific for a human Clara cell 10 kDa protein. The cDNA from two positive clones was sequenced by the dideoxy chain termination method. The nucleotide and primary amino-acid sequence deduced therefrom are presented. The N-terminal amino-acid sequence of the Clara cell 10 kDa protein, purified from bronchoalveolar lavage, was also determined. The deduced and experimentally determined sequences were identical where data for both were available. From the amino-acid composition, deduced and experimentally determined amino-acid sequences, it was determined that the 10 kDa protein in bronchoalveolar lavage consists of two identical 70-amino-acid long polypeptide chains joined by two cystine residues. The size of mRNA for the protein was found to be about 0.6 kb and the monomeric nascent protein, obtained by in vitro translation of lung mRNA was about 7.3 kDa in size. The 10 kDa protein recovered from bronchoalveolar lavage has 61% sequence identity with rabbit uteroglobin, the two proteins have common predicted secondary structures with marked surface differences when comparing predicted and actual structure determined by X-ray diffraction. The differences imply similarity of structure but, not identity of function.  相似文献   

5.
GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis.  相似文献   

6.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.  相似文献   

7.
GTP cyclohydrolase II structure and mechanism   总被引:1,自引:0,他引:1  
GTP cyclohydrolase II converts GTP to 2,5-diamino-6-beta-ribosyl-4(3H)-pyrimidinone 5'-phosphate, formate and pyrophosphate, the first step in riboflavin biosynthesis. The essential role of riboflavin in metabolism and the absence of GTP cyclohydrolase II in higher eukaryotes makes it a potential novel selective antimicrobial drug target. GTP cyclohydrolase II catalyzes a distinctive overall reaction from GTP cyclohydrolase I; the latter converts GTP to dihydroneopterin triphosphate, utilized in folate and tetrahydrobiopterin biosynthesis. The structure of GTP cyclohydrolase II determined at 1.54-A resolution reveals both a different protein fold to GTP cyclohydrolase I and distinctive molecular recognition determinants for GTP; although in both enzymes there is a bound catalytic zinc. The GTP cyclohydrolase II.GMPCPP complex structure shows Arg(128) interacting with the alpha-phosphonate, and thus in the case of GTP, Arg(128) is positioned to act as the nucleophile for pyrophosphate release and formation of the proposed covalent guanylyl-GTP cyclohydrolase II intermediate. Tyr(105) is identified as playing a key role in GTP ring opening; it is hydrogen-bonded to the zinc-activated water molecule, the latter being positioned for nucleophilic attack on the guanine C-8 atom. Although GTP cyclohydrolase I and GTP cyclohydrolase II both use a zinc ion for the GTP ring opening and formate release, different residues are utilized in each case to catalyze this reaction step.  相似文献   

8.
GTP cyclohydrolase I, an enzyme that catalyzes the first reaction in the pathway for the biosynthesis of pterin compounds, was purified from of C3H mouse liver by 192-fold to apparent homogeneity, using Ultrogel AcA34, DEAE-Trisacryl, and GTP-agarose gels. Its native molecular weight was estimated at 362,000. When the enzyme was subjected to electrophoresis on a denaturing polyacrylamide gel, only one protein band was evident, and its molecular weight was estimated at 55,700. The NH2-terminal amino acid of this enzyme was serine. These results indicate the enzyme consists of six to eight subunits. No coenzyme or metal ion was required for activity. This enzyme activity was inhibited by most of divalent cations and was slightly activated by potassium ion. The Km value for GTP was determined to be 17.3 microM. The temperature and pH optima for the activity were 60 degrees C and pH 8.0-8.5, respectively. The expected products, a dihydroneopterin compound and formic acid, were found in a molar ratio of 1.01. A polyclonal antiserum generated against the purified enzyme was used to compare GTP cyclohydrolase I from the hph-1 mutant and normal mouse. The hph-1 mutant liver contained only 8% of normal specific activity, but a normal amount of GTP cyclohydrolase I antigen as compared with the C3H mouse. Subunit molecular weight and electrophoretic behavior of GTP cyclohydrolase I from hph-1 mutant were not different from those of the enzyme from C3H mouse. These results suggest that the hph-1 mutation may involve alteration of the catalytic site but does not detectably alter the whole enzyme structure.  相似文献   

9.
The sequence of the gene from Nocardia sp. NRRL 5646 encoding GTP cyclohydrolase I (GCH), gch, and its adjacent regions was determined. The open reading frame of Nocardia gch contains 684 nucleotides, and the deduced amino acid sequence represents a protein of 227 amino acid residues with a calculated molecular mass of 24,563Da. The uncommon start codon TTG was identified by matching the N-terminal amino acid sequence of purified Nocardia GCH with the deduced amino acid sequence. A likely ribosomal binding site was identified 9bp upstream of the translational start site. The 3' end flank region encodes a peptide that shares high homology with dihydropteroate synthases. Nocardia GCH has 73 and 60% identity to the proteins encoded by the putative gch of Mycobacterium tuberculosis and Streptomyces coelicolor, respectively. Nocardia GCH was highly expressed in Escherichia coli cells carrying a pHAT10 based expression vector, and moderately expressed in Mycobacterium smegmatis cells carrying a pSMT3 based expression vector. Enterokinase digestion of recombinant Nocardia GCH, and in-gel digestion of Nocardia GCH and recombinant GCH followed by MALDI-TOF-MS analysis, confirmed that the actual subunit size of the enzyme was 24.5kDa. Thus, we conclude that the active form of native Nocardia GCH is a decamer. Our earlier incorrect conclusion was that the native enzyme was an octamer derived from the anomalous SDS-PAGE migration of the subunit.  相似文献   

10.
11.
GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine.  相似文献   

12.
The amino-acid sequence of a tetrameric manganese superoxide dismutase from Thermus thermophilus HB8 has been determined. The protein was cleaved with cyanogen bromide (BrCN) into four peptides and their alignment was deduced through the fragment of partial cleavage with BrCN and the peptides were produced by cleavage of the protein with o-iodosobenzoic acid. Most of the peptides were sequenced by solid phase Edman degradation. Some of the peptides were sequenced by the Edman dansyl method after sub-fragmentation by proteinase digestion. The amino-acid sequence consists of 203 residues corresponding to a subunit molecular weight of 23,144.  相似文献   

13.
Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.  相似文献   

14.
The coding region of the cDNA of protein phosphatase inhibitor-2 was determined by polymerase chain reaction amplification. The cDNA clone consisted of 621 nucleotides, and encoded 204 amino acids. The deduced amino-acid sequence was identical with that of the sequence reported by chemical sequencing methods.  相似文献   

15.
Wheat embryo histone H3 has been isolated and purified and the elucidation of the complete amino-acid sequence is described. Peptides were generated by cleavages with CNBr, S. aureus V8 proteinase, endoproteinase Lys-C and trypsin. The peptides were purified by HPLC and the sequence determined by solid-state and gas-phase sequencing methodology. The amino-acid sequence of the protein is identical to pea embryo histone H3 and the sequence deduced from the nucleotide sequence of a wheat embryo histone gene (Tabata T. et al. (1984) Mol. Gen. Genet. 196, 397-400).  相似文献   

16.
GTP cyclohydrolase I, the first enzyme in the de novo biosynthesis of tetrahydrobiopterin, was enriched more than 13,000-fold from human liver by preparative isoelectric focusing using Sephadex G-200 SF gels. The pI of the active enzyme was determined as 5.6 by analytical isoelectric focusing in the same matrix. The native enzyme has an apparent molecular mass of 440 kDa and appears to be composed of eight 50-kDa subunits as estimated from SDS/PAGE. The enriched enzyme preparation was used to produce specific monoclonal antibodies. From 11 monoclonal antibodies obtained, one was extensively characterized for further applications. This monoclonal antibody belongs to the IgM class and shows immunoreactivity with GTP cyclohydrolase I both from man and from Escherichia coli. It is capable of highly sensitive detection of GTP cyclohydrolase I by ELISA and by Western blot analysis. The monoclonal antibody was used for the immunoenzymatic localisation of GTP cyclohydrolase I in human peripheral blood mononuclear cells. Furthermore, it was possible to demonstrate the absence of immunoreactivity in cells with GTP cyclohydrolase I deficiency. The antibody's use as a tool either for differential diagnosis of atypical phenylketonuria due to GTP cyclohydrolase I deficiency or prenatal diagnosis of this severe inherited metabolic disease is now under investigation.  相似文献   

17.
18.
To explore the molecular etiology of two disorders caused by a defect in GTP cyclohydrolase I--hereditary progressive dystonia with marked diurnal fluctuation (HPD), also known as dopa-responsive dystonia (DRD), and autosomal recessive GTP cyclohydrolase I deficiency--we purified and analyzed recombinant human wild-type and mutant GTP cyclohydrolase I proteins expressed in Escherichia coli. Mutant proteins showed very low enzyme activities, and some mutants were eluted at a delayed volume on gel filtration compared with the recombinant wild-type. Next, we examined the GTP cyclohydrolase I protein amount by western blot analysis in phytohemagglutinin-stimulated mononuclear blood cells from HPD/DRD patients. We found a great reduction in the amount of the enzyme protein not only in one patient who had a frameshift mutation, but also in an HPD/DRD patient who had a missense mutation. These results suggest that a dominant-negative effect of chimeric protein composed of wild-type and mutant subunits is unlikely as a cause of the reduced enzyme activity in HPD/DRD patients. We suggest that reduction of the amount of the enzyme protein, which is independent of the mutation type, could be a reason for the dominant inheritance in HPD/DRD.  相似文献   

19.
The soluble acylase I from rat kidney was purified to homogeneity using a five-step procedure. As the resulting protein was found to have a relative molecular mass of 125 kDa based on size-exclusion chromatography and 44 kDa based on SDS/PAGE, the native protein was taken to consist of three subunits. The amino-acid sequence of a peptide resulting from limited proteolysis of the polypeptide chain with proteinase K, which was determined by microsequencing (RHEFHALRAGFALDEGLA), was found to be very similar to the corresponding sequence of porcine kidney acylase I. However, as N-furyl-acryloyl-L-methionine, a synthetic substrate for porcine acylases, was not hydrolyzed by the rat enzyme, it was suggested that the polypeptide chain might differ in other respects from those of the other acylases I. A full length cDNA coding for the rat kidney acylase I was therefore isolated and found to contain a 1224-bp open reading frame encoding a protein consisting of 408 amino-acid residues, which corresponded to a calculated molecular mass of 45 847 Da per subunit. The deduced amino-acid sequence showed 93.6% and 87.2% identity with that of the human liver and porcine kidney, respectively.  相似文献   

20.
A Bracher  N Schramek  A Bacher 《Biochemistry》2001,40(26):7896-7902
GTP cyclohydrolase I catalyzes a mechanistically complex ring expansion affording dihydroneopterin triphosphate from GTP. The inherently slow enzyme reaction was studied under single turnover conditions monitored by multiwavelength ultraviolet spectroscopy. The spectroscopic data array was subjected to singular value decomposition and thereby shown to comprise six significant linearly independent optical processes. The data were fitted to a model of six consecutive unimolecular reaction steps where the first was considered to be reversible. The rate-limiting step was shown to occur rather late in the reaction sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号