首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of prostaglandins in exocrine pancreatic enzyme secretion was studied. The effects of three inhibitors of prostaglandin and thromboxane syntheses, were evaluated on release of amylase from dispersed rat pancreatic acinar cells. Mepacrine inhibited, while indomethacin and imidazole had no effect on basal or carbachol or cholecystokinin stimulated enzyme release. Exogenous arachidonic acid or various prostaglandins (E1, E2, F, I2), also did not affect the secretory process. Acinar cells actively incorporated radioactive arachidonic acid, principally into phospholipids (especially phosphatidylcholine), however release of the free fatty acid and subsequent synthesis of radioactive endogenous prostaglandins was not stimulated by the presence of different pancreatic stimulants. Pancreatic microsomes were found to be lacking in cyclo-oxygenase, an enzyme involved in endegenous synthesis of prostaglandins. The data suggest that prostaglandins are not involved directly in excitation-secretion coupling in the exocrine pancreas.  相似文献   

2.
The metabolism of arachidonic and linoleic acids by VX2 carcinoma tissue was determined. Prostaglandin E2 was the major metabolic product of arachidonic acid in the neoplastic tissue. Minor products accounting for 3– 8% of arachidonic acid metabolism were 11-hydroxy-5, 8, 12, 14-eicosatetraenoic acid (11-HETE) and 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid (15-HETE). Linoleic acid was converted to a mixture of 9-hydroxy-10, 12-octadecadienoic acid (9-HODD) and 13-hydroxy-9, 11-octadecadienoic acid (13-HODD). The conversion of linoleic acid to monohydroxy C-18 fatty acids varied from 40–80% 9-HODD and 20–60% 13-HODD in tumor tissue harvested from different animals. The quantity of monohydroxy C-18 fatty acids biosynthesized by VX2 carcinoma tissue from endogenous linoleic acid equals or exceeds that of prostaglandin E2 biosynthesis from endogenous arachidonic acid. The presence of a hydroxyl group adjacent to a conjugated diene suggest that the monohydroxy C-18 and monohydroxy C-20 fatty acids were formed via the action of lipoxygenase-like enzymes. These lipoxygenase-like reactions are inhibited by indomethacin in a concentration-dependent fashion similar to the inhibition of prostaglandin E2 biosynthesis. The enzymes catalyzing the lipoxygenase-like reactions of linoleic and arachidonic acids are localized in the microsomal fraction of VX2 carcinoma tissue. These data suggest that the lipoxygenase-like reactions are catalyzed by fatty acid cyclooxygenase and that there are two major pathways of fatty acid cyclooxygenase metabolism of polyenoic fatty acids in the neoplastic tissue. One pathway involves the formation of prostaglandin E2 via cyclic endoperoxy intermediates. The second pathway involves the formation of monohydroxy C-18 fatty acids from linoleic acid via lipoxygenase-like reactions.  相似文献   

3.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclooxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2α, prostacyclin and thromboxane A2. Prostaglandins E2 and F2α are the principal cyclo-oxygenase products of this interaction.We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2α by leukocytes.  相似文献   

4.
Addition of 1μM puromycin or 1 μM emetine to rat soleus muscle in vitro decreases muscle prostaglandin E2 release by 51–77%. This inhibition appears to be caused by decreased availability of endogenous arachidonic acid for prostaglandin E2 synthesis, because neither puromycin nor emetine inhibits muscle prostaglandin E2 production from arachidonic acid added into the incubation medium.  相似文献   

5.
Changes in arterial blood pressure and heart rate were observed in the spontaneous hypertensive (SH) rat following the intravenous administration of arachidonic acid, the precursor of prostaglandin E2 (PGE2). The pronounced fall in blood pressure and the increase in heart rate induced by arachidonic acid were also observed in SH rats receiving either prostaglandin E1 (PGE1) or PGE2. In SH rats receiving various anti-inflammatory agents the cardiovascular responses to arachidonic acid were inhibited, but the blood pressure responses to the E-type prostaglandins were not altered. The data are interpreted to suggest that cardiovascular changes induced by arachidonic acid are mediated via its conversion to PGE2.  相似文献   

6.
In the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) or the non-TPA-type tumor promoter, palytoxin, recombinant human insulin growth factor-I (IGF-I) and insulin synergistically stimulate prostaglandin production in rat liver cells (the C-9 cell line). Combinations fo palytoxin or TPA with recombinant human IGF-I or insulin also synergistically stimulate deesterification of c ellular lipids in C-9 cells prelabelled with [3H]arachidonic acid. With both types of stimulations, prostaglandin production or deesterification, the synergistic response of the IGF-I and insulin is greater with palytoxin than with TPA. Production of prostaglandin E2 and F by squirrel monkey smooth muscle cells incubated in the presence of TPA and insulin also is greater than the sum of the effects taken independently.  相似文献   

7.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10−6 M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, my be regulators of prostaglandin production by the amnion.  相似文献   

8.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

9.
Slices of rabbit renal medulla and rabbit renal papilla were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15-3H]-arachidonic acid. In both tissues, comparison of the isotope ratios of the radioactive products with the isotope ratio of the added arachidonic indicated that: (a) there was no discernable isotope effect in the biosynthesis of prostaglandin E2; (b) prostaglandin F2α was formed by reduction of prostaglandin H2 and not by reduction of prostaglandin E2; and (c) most of the radioactive product arose from arachidonic acid that had been incorporated into the tissue and not from the direct action of cyclooxygenase on arachidonic acid in the medium.  相似文献   

10.
11.
The application of anti-cyclo-oxygenase and anti-prostaglandin E2 immunoglobulins to A23187-stimulated rat connective tissue mast cells has permitted the localization of cyclooxygenase activity (prostaglandin H2 synthetase) and the site of prostaglandin E2 (PGE2) formation in the secretory granules. Because binding was carried out after stimulation but before dehydration and embedding, we have limited the loss of these antigens due to normal degradation and to aqueous and solvent washes. As this method permits labeling of exposed cell surfaces, only granules that have been exteriorized can be labeled. Contrary to what might have been expected, no labeling was associated with plasma membranes or with any portion of damaged cells. Antibodies to PGE2 were bound evenly over the surface of the granule matrix, whereas antibodies to cyclo-oxygenase appeared to be bound to strands of proteo-heparin projecting from the surface of the granule matrix. Where granule matrix had become unraveled and dispersed, label appeared to adhere throughout the ribbon-like proteo-heparin strands. These results support our previous conclusion that the secretory granule is the site of the arachidonic acid cascade during exocytosis.  相似文献   

12.
Some foods and laxatives stimulate prostanoid biosynthesis and this effect is inhibited by acetylsalicylate (1); prostanoid administration causes diarrhoea and other symptoms of gut dysfunction (2,3,4). We therefore studied the effects of arachidonic acid, prostaglandins E1 and E2, endotoxin, laxatives and cyclooxugenase inhibitors in the rat ‘enteropooling’ test (5). All drugs were given orally. Prostaglandin E2 (0.2mg/ kg), prostaglandin E1 (0.74mg/kg), arachidonic acid (129mg/kg), castor oil (0.42ml/kg), magnesium sulphate (37mg/kg) and endotoxin (39.5mg/kg) doubled intestinal fluid volume. Cyclooxygenase inhibitors reduced arachidonate-induced enteropooling (indomethacin > acetylsalicylic acid > paracetamol > sodium salicylate > bismuth subsalicylate). Acetylsalicylic acid inhibited endotoxin-, castor oil-, but not prostaglandin E2-or magnesium sulphate-induced enteropooling. Because acetylsalicylic acid was unexpectedly active in this test, we suggest that it may prove useful for the treatment of ‘travellers’ diarrhoea.  相似文献   

13.
The identification of a non-bilayer phospholipid storage in the secretory granule and the linking of the eicosanoid production with the release of histamine have prompted us to examine whether the secretory granule may also serve as both the source as well as the site of prostaglandin synthesis during exocytosis. By exposing the contents of purified granules to exogenous arachidonic acid at neutral pH, we observed the rapid formation of many eicosanoids. The presence of prostaglandins E2, D2 and F2a were identified. The kinetics of E2 formation was also followed. The localization of the arachidonic acid cascade to the secretory granule explains why the production of eicosanoids is so intimately tied to the process of granule exocytosis.  相似文献   

14.
Effects of acetaminophen on the renal inner medullary production of prostaglandin E2 and F were compared with the well-known effects of aspirin on this process. Acetaminophen was found to elicit a dose-dependent inhibition of both prostaglandin E2 and F accumulation in media with a Ki of 100–200 μM. This inhibition could not be accounted for by increased accumulation of prostaglandins within slices. Acetaminophen inhibition was reversed by removal of acetaminophen during the incubation or by addition of arachidonic acid. Similar manipulations did not reverse aspirin or indomethacin-mediated inhibition of prostaglandin synthesis. Thin-layer and gas chromatographic analysis of acetaminophen following incubation with slices demonstrated that this material was identical to authentic acetaminophen. This, in addition to the lack of an effect of glutathione on inhibition, suggests that acetaminophen does not have to be metabolized to exert this inhibition. Arachidonic acid did not alter the metabolism or increase the efflux of acetaminophen. Lower levels of prostaglandin E2 observed with 5 mM acetaminophen and 1 mM aspirin caused a corresponding decrease in cyclic AMP content. Removal of acetaminophen from the second incubation or addition of arachidonic acid caused increases in both prostaglandin E2 and cyclic AMP. Aspirin inhibition of cyclic AMP content was not reversed by similar manipulations. In vivo inhibition of inner medullary prostaglandin E2 and prostaglandin F synthesis was observed 2 h after a 375 mg/kg, intraperitoneal injection of acetaminophen. These data suggest that acetaminophen, like aspirin, is capable of reducing tissue prostaglandin synthesis. However, the mechanisms by which these two analgesic and antipyretic agents elicit their inhibition of prostaglandin synthesis are quite different.  相似文献   

15.
Separation and quatification of prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) were achieved using reverse phase high performance liquid chromatography (HPLC). Panacyl bromide (p-(9-anthroyloxy)phenacyl bromide) (PAB) derivatives of PGE2 and PGE1 were prepared. Reverse phase HPLC using a linear gradient of 56% to 80% acetonitrile in water containing 0.10% acetic acid gave baseline resolution of the two derivatives. A 3 um diameter particle, C18 column provided good resolution and reproducible recoveries. Human synovial tissue cells were incubated with the precursor fatty acids for PGE1 or PGE2 and stimulated with a crude Interleukin 1 (IL-1) preparation. Cells grown in the presence of dihomogammalinolenic acid (DGLA), the precursor for PGE1, made significantly more PGE1 than cells grown in control medium or in the presence of arachidonic acid, precursor for PGE2. PGE2 synthesis was reduced when DGLA was added to cells (resting or IL-1-stimulated).  相似文献   

16.
In the present investigation, we found that among the prostanoids that human amnion cells, which are maintained in monolayer culture, secrete into the culture medium, prostaglandin E2 is by far the predominant one. In the presence of inhibitors of prostaglandin synthase, the production of prostaglandin E2 by these cells is abolished. Amnion cells maintained in the presence of fetal calf serum produce greater quantities of prostaglandin E2 than do cells maintained in serumless medium. In the amnion cells, there is little or no metabolism of prostaglandin E2; this also is true of amnion tissue. The unique characteristics of prostaglandin biosynthesis and metabolism by human amnion cells in monolayer culture are identical with those of human amnion tissue. Hence, we suggest that amnion cells in culture constitute an excellent model for investigations of the regulation of prostaglandin E2 biosynthesis in this tissue.  相似文献   

17.
We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+ stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.  相似文献   

18.
Thromboxane B2 was formed from endogenous precursors during short incubations of guinea pig and rat cerebral cortex. The amount formed by guinea pig brain tissue was 5–6 times the formation of prostaglandin F and E2. Noradrenalin stimulated and indomethacin and mercaptoethanol inhibited thromboxane B2 formation. The mass spectrum of the brain compound was identical to thromboxane B2 formed from arachidonic acid by guinea pig lung and human platelets.  相似文献   

19.
Exogenous lysolecithin inhibits prostaglandin E2 synthesis from arachidonic acid in bovine seminal vesicle microsomes at plausible physiological levels (lysolecithin-to-protein ratios ? 0.03 [w/w]) by inhibiting fatty acid cyclo-oxygenase activity. Structurally defined lysolecithins with varying fatty acid chain length exhibit varying effectiveness as inhibitors. Addition of equimolar quantities of free fatty acid lowers the lysolecithin concetration required for inhibition. Exogenous lysolecithin inhibits unstimulated and thrombin-stimulated prostaglandin E2 synthesis from endogenous substrate in SVBalb/3T3 cells. Serum treatment of SVBalb/3T3 cells, which generates endogenous lysolecithin and free fatty acids, decreases the efficiency of conversion of free arachidonic acid to prostaglandins. These results suggest a possible role for the products of phospholipase A2 action in the regulation of prostaglandin synthesis.  相似文献   

20.
Prostaglandin E2 is one of the major cyclooxygenase metabolites of arachidonic acid. We developed a competitive immunosorbent assay for prostaglandin E2 utilizing a bioluminescent enzyme Cypridina luciferase. The prostaglandin E2 amount could be quantified over the concentration ranging from 7.8 to 500 pg/mL. The amount of unlabeled prostaglandin E2 required to displace 50% of the maximal binding of Cypridina luciferase‐labeled prostaglandin E2 (B/B0) was approximately 35 pg/mL. The results show a great potential of Cypridina luciferase as a new labeling enzyme for enzyme‐linked immunosorbent assay. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号