首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restriction enzyme digestion of hemimethylated DNA.   总被引:26,自引:17,他引:9       下载免费PDF全文
Hemimethylated duplex DNA of the bacteriophage phi X 174 was synthesized using primed repair synthesis is in vitro with E. coli DNA polymerase I followed by ligation to produce the covalently closed circular duplex (RFI). Single-stranded phi X DNA was used as a template, a synthetic oligonucleotide as primer and 5-methyldeoxycytidine-5'-triphosphate (5mdCTP) was used in place of dCTP. The hemimethylated product was used as substrate for cleavage by various restriction enzymes. Out of the 17 enzymes tested, only 5 (BstN I, Taq I, Hinc II, Hinf I and Hpa I) cleaved the hemimethylated DNA. Two enzymes (Msp I and Hae III) were able to produce nicks on the unmethylated strand of the cleavage site. Msp I, which is known to cleave at CCGG when the internal cytosine residue is methylated, does not cleave when both cytosines are methylated. Another enzyme, Apy I, cleaves at the sequence CCTAGG when the internal cytosine is methylated, but is inactive on hemimethylated DNA in which both cytosines are methylated. Hemimethylated molecules should be useful for studying DNA methylation both in vivo and in vitro.  相似文献   

2.
The accuracy with which Escherichia coli DNA polymerase I (Pol I) copies natural DNA in vitro has been determined. When phi X174 viral DNA containing an amber mutation (am3) is primed with a single restriction endonuclease fragment, copied in vitro with Pol I and then expressed in E. coli spheroplasts (Weymout, L. A., and Loeb, L. A. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1924), the reversion frequency of this DNA is greater than that of uncopied DNA. This change in reversion frequency can be increased by selectively increasing the concentration of either dATP or dCTP relative to the other deoxyribonucleotide substrates. DNA sequence analyses of revertants obtained from substrate pool bias experiments demonstrates that the revertants contain the selectively biased nucleotide as an incorrect substitution at position 587 of the am3 codon. We have analyzed the product of the in vitro Pol I reaction using neutral and alkaline sucrose gradients. Fifty per cent of the input phi X174 DNA template molecules are copied past the am3 site. The phenotypic expression of the product (revertant) strand in the spheroplast assay was estimated using a model heteroduplex molecule similar in structure to the product of the reaction and containing a single base mismatch (A:A or A:C) at position 587. Using these data, and by extrapolation from pool bias experiments, we estimate the error rate of Pol I in Mg2+-activated reactions using equimolar concentrations of the four deoxynucleotide substrates is 1/680,000 for an A:C mispair and < 1/6,300,000 for an A:A mispair at position 587 of the am3 codon in phi X174 DNA.  相似文献   

3.
Bacteriophage phi X174 single-stranded DNA molecules were primed with five different restriction fragments and irradiated with visible light in the presence of proflavine. This photodamaged DNA was used as template for the in vitro complementary chain synthesis by E. coli DNA polymerase I (Klenow fragment). Chain terminations were observed by polyacrylamide gel electrophoresis of the synthesized products and localized by comparison with standard sequencing performed simultaneously on the untreated template. 90% of the chain terminations occurred one nucleotide before a guanine residue in the template strand. More than 80% of the sequenced guanine residues were blocking lesions demonstrating the absence of 'hot-spots' for the photodamaging effect of proflavine. At a defined position, the chain termination frequency increased linearly with the irradiation time and was directly influenced by the proflavine concentration present. An important part of lesions resulted from the action of singlet oxygen produced by excited proflavine as shown by the effect that both NaN3 and 2H2O exerted on the reaction. The induced blocking lesions must be important in vivo since no complete replicative forms could be extracted from cell infected with bacteriophages inactivated by 'proflavine and light' treatment.  相似文献   

4.
5.
The phi X174 (phi X) gene A protein-mediated termination and reinitiation of single-stranded circular (SS(c] phi X viral DNA synthesis in vitro were directly and independently analyzed. Following incubation together with purified DNA replication enzymes from Escherichia coli, ATP, [alpha-32P]dNTPs, and either the phi X A protein and phi X replicative form I (RF I) DNA, or the purified RF II X A complex, the phi X A protein was detected covalently linked to newly synthesized 32P-labeled DNA. Formation of the phi X A protein-[32P]DNA covalent complex required all the factors necessary for phi X (+) SS(c) DNA synthesis in vitro. Thus, it was a product of the reinitiation reaction and an intermediate of the replication cycle. Identification of this complex provided direct evidence that reinitiation of phi X (+) strand DNA synthesis involved regeneration of the RF II X A complex. Substitution of 2',3'-dideoxyguanosine triphosphate (ddGTP) for dGTP in reaction mixtures resulted in the formation of covalent phi X A protein 32P-oligonucleotide complexes; these complexes were trapped analogues of the regenerated RF II X A complex. They could not act catalytically due to the presence of ddGMP residues at the 3'-termini of the oligonucleotide moieties. Reaction mixtures containing ddGTP also yielded nonradioactive (+) SS(c) DNA products derived from circularization of the displaced (+) strand of the input parental template DNA. The formation of the phi X A protein-32P-oligonucleotide complexes and nonradioactive (+) SS(c) DNA were used to assay both reinitiation and termination reactions, respectively. Both reactions required DNA synthesis from the 3'-hydroxyl primer at nucleotide residue 4305 which was formed by cleavage of phi X RF I DNA by the phi X A protein. Elongation of this primer by 18, but not 11 nucleotides was sufficient to support each reaction. Reinitiation reactions proceeded rapidly and were essentially complete after 90 s. In contrast, when ddGTP was replaced with dGTP in reaction mixtures, DNA synthesis proceeded with linear kinetics for up to 10 min. These results suggested that in the presence of all four dNTPs, active templates supported more than 40 rounds of DNA synthesis.  相似文献   

6.
DNA polymerase alpha and models for proofreading.   总被引:4,自引:2,他引:2       下载免费PDF全文
Using a modified system to measure fidelity at an amber site in phi X174, we have employed DNA polymerase alpha to test different mechanisms for proofreading. DNA polymerase alpha does not exhibit the characteristics of "kinetic proofreading" seen with procaryotic polymerases. Polymerase alpha shows no evidence for a "next nucleotide" effect, and added deoxynucleoside monophosphates do not alter fidelity. Pyrophosphate, which increases error rates with a procaryotic polymerase, appears to weakly improve polymerase alpha fidelity. DNA polymerase alpha does exhibit a dramatic increase in error rate in the presence of a deoxycytidine thiotriphosphate (dCTP alpha S), but this enhanced mutagenesis also occurs under conditions where kinetic proofreading should be otherwise defeated. This particular effect with dCTP alpha S appears specific for DNA polymerase alpha and is not seen with the other polymerases tested.  相似文献   

7.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

8.
The effect of template secondary structure on vaccinia DNA polymerase.   总被引:3,自引:0,他引:3  
Vaccinia virus DNA polymerase will utilize a substrate consisting of phi X174 DNA primed with a strand of a unique restriction fragment, but the reaction is inefficient. Examination of the reaction products by alkaline agarose gel electrophoresis revealed a few discrete fragments, each corresponding to an extended primer strand. This result implies that specific barriers exist on the phi X174 template which impede, but do not completely halt, the progress of the enzyme. Only a few per cent of the template molecules were completely copied. Similar findings were reported by Sherman and Gefter using Escherichia coli DNA polymerase II and fd DNA (J. Mol. Biol. (1976) 103, 61-76). Several observations suggest that the barriers are regions of template secondary structure. Some barriers are more effective than others, and they increase in both effectiveness and number as the temperature is decreased. The same barriers are observed with T4 DNA polymerase, but none are detected with E. coli DNA polymerase I. Finally, the major barriers are located in regions of the phi X174 sequence known to contain hairpin structures of relatively high stability. The exact stopping point of one of the major barriers is within the duplex stem of a hairpin structure. These results show that DNA polymerases are a useful probe of the secondary structure of a single-stranded DNA.  相似文献   

9.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

10.
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.  相似文献   

11.
Effects of the size of template DNA on the DNA packaging reaction of bacteriophage phi X174 were studied using plasmids of various sizes which contain the phi X174 origin of DNA replication and the in vitro phage synthesizing system (Aoyama, A., Hamatake, R. K., and Hayashi, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4195-4199). DNA between 78.5% and 101% of the length of phi X174 DNA produced infectious particles efficiently. Packaging of DNA smaller or larger than this range produced uninfectious defective particles. Although these particles contained circular single-stranded DNA, they suffered structural changes which altered the sedimentation properties or the ability to adsorb to the cells. Mutant phage were found from the packaging reaction of DNA larger than 101% of phi X174 DNA. These mutants deleted the termination region of DNA, suggesting that they were produced by early termination of the phage synthesizing reaction.  相似文献   

12.
S Gillam  M Smith 《Gene》1979,8(1):81-97
A synthetic oligodeoxyribonucleotide mismatched at a single nucleotide to a specific complementary site on wild-type circular phi X174 DNA can be used to produce a defined point mutation after in vitro incorporation into closed circular duplex DNA by elongation with DNA polymerase and ligation followed by transfection of Escherichia coli (Hutchison et al., 1978; Gillam et al., 1979). The present study is an investigation of the optimum conditions required for the oligodeoxyribonucleotide-primed reaction for production of transition and transversion mutations in phi X174 DNA, using the large (Klenow) fragment of E. coli DNA polymerase I. Under optimum conditions up to 39% of the progeny of transfection are the desired mutant and significant mutation is observed using a heptadeoxyribonucleotide.  相似文献   

13.
The influence of a C----G transversion at position 1 of the 30-base pair replication origin of bacteriophage phi X174 replicative form I DNA (phi X RFI) was examined in the RF----single-stranded circular DNA replication pathway catalyzed by the combined action of the purified phi X A protein, the Escherichia coli DNA polymerase III holoenzyme, rep helicase, and single-stranded DNA binding protein (Eisenberg, S., Scott, J.F., and Kornberg, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1594-1597; Reinberg, D., Zipursky, S.L., and Hurwitz, J. (1981) J. Biol. Chem. 256, 13143-13151). RFI DNA containing this transversion was cleaved to RFII by the phi X A protein as effectively as DNA containing the wild-type origin. The altered duplex DNA, however, supported replication at a slower rate (3- to 4-fold) than the wild-type DNA due to a defect in the termination and reinitiation reactions catalyzed by the phi X A protein. This defect resulted in the accumulation of DNA products containing long single strands covalently joined to the mutant DNA. These single strands were susceptible to nuclease S1 and exonuclease VII attack. The defect in the template DNA containing C----G transversion was not corrected when this mutant origin was placed on the same strand with a wild-type origin. This double-origin DNA was also replicated poorly and led to the accumulation of large products, in contrast to the products formed with RFI DNA containing two wild-type 30-base pair replication origins on the same strand.  相似文献   

14.
Two distinct mechanisms of action for intercalating agents have been delineated: one leading to the production of frameshift misincorporations and the other leading to the production of single-base substitutions. Addition misincorporations are competitive with respect to DNA template (a measure of classical intercalation) but are not competitive with respect to deoxynucleotide substrates. Single-base substitutions are not competitive with template, polymerase, or deoxynucleotide as tested individually, but are proportional to the absolute drug concentration, indicating a ternary complex involving intercalator, polymerase, and template. Increased frequencies of single-base substitutions have not been considered as a general property of intercalators. Using a mutant phi X174 DNA, we demonstrate that intercalators also induce single-base substitutions with natural DNA templates. Reversion of am3 phi X174 DNA occurs only by single-base substitutions at position 587; this is increased 8-fold when the DNA is copied in vitro in the presence of intercalators.  相似文献   

15.
Bacteriophage phi X174 and M13 mp9 single-stranded DNA molecules were primed either with restriction fragments or synthetic primers and irradiated with near UV light in the presence of promazine derivatives. These DNAs were used as template for in vitro complementary chain synthesis by Escherichia coli DNA polymerase I large fragment. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis of the synthesis products and localized by comparison with a standard dideoxy sequencing pattern. More than 90% of the chain terminations were mapped exactly one nucleotide before a guanine residue. In addition, photoreaction was shown to occur more predominantly with guanine residues localized in single-stranded parts of the genome. The same guanine residues could also be damaged when the reaction was performed, in the dark, in the presence of the artificially generated promazine cation radicals. Using the BamHI-SmaI adaptor (5'GATCCCCGGG-3'), it was shown that the guanine alteration was a covalent addition of the promazine, or of a cation radical photodegradation product, on the guanine moiety. Kinetics of chlorpromazine photoaddition on single-stranded and double-stranded DNAs were determined.  相似文献   

16.
Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs are shown to be A* protein-DNA complexes by electron microscopy using the protein labeling technique of Wu and Davidson (1). The linear double-stranded RFIII DNA molecule carries at one end a covalently attached A* protein whereas at the other end of the molecule the single-stranded termini are covalently linked to each other. The structure of the RFIII DNA shows its way of formation. The described properties of the A* protein indicate the way the larger A protein functions in the termination step of the rolling-circle type of phi X174 DNA replication.  相似文献   

17.
18.
The influence of the bacteriophage phi X174 (phi X) C protein on the replication of bacteriophage phi X174 DNA has been examined. This small viral protein, which is required for the packaging of phi X DNA into proheads, inhibits leading strand DNA synthesis. The inhibitory effect of the phi X C protein requires a DNA template bearing an intact 30-base pair (bp) phi X origin of DNA replication that is the target site recognized by the phi X A protein. Removal of nucleotides from the 3' end of this 30-bp conserved origin sequence prevents the inhibitory effects of the phi X C protein. Leading strand replication of supercoiled DNA substrates containing the wild-type phi X replication origin results in the production of single-stranded circular DNA as well as the formation of small amounts of multimeric and sigma structures. These aberrant products are formed when the termination and reinitiation steps of the replication pathway reactions are skipped as the replication fork moves through the origin sequence. Replication carried out in the presence of the phi X C protein leads to a marked decrease in these aberrant structures. While the exact mechanism of action of the phi X C protein is not clear, the results presented here suggest that the phi X C protein slows the movement of the replication fork through the 30-bp origin sequence, thereby increasing the fidelity of the termination and reinitiation reactions. In keeping with the requirement for the phi X C protein for efficient packaging of progeny phi X DNA into proheads, the phi X C protein-mediated inhibition of leading strand synthesis is reversed by the addition of proteins essential for phi X bacteriophage formation. Incubation of plasmid DNA substrates bearing mutant 30 base pair phi X origin sequences in the complete packaging system results in the in vitro packaging and production of infectious particles in a manner consistent with the replication activity of the origin under study.  相似文献   

19.
Process of attachment of phi X174 parental DNA to the host cell membrane   总被引:2,自引:0,他引:2  
The phi X174-DNA membrane complex was isolated from Escherichia coli infected with phi X174 am3 by isopycnic sucrose gradient centrifugation followed by zone electrophoresis. The phi X174 DNA-membrane complex banded at two positions, intermediate density membrane fraction and cytoplasmic membrane fraction, having bouyant densities of 1.195 and 1.150 g/ml, respectively. Immediately after infection with phi X147, replicating DNA was pulse-labeled and then the incorporated label was chased. The radioactivity initially recovered in the intermediate density membrane fraction migrated to the cytoplasmic membrane fraction. The DNAs from both complexes sedimented mainly at the position of parental replicative form I (RFI). The phi X174 DNA-membrane complex contained a speficic membrane-bound protein having a molecular weigth of 80,000 which is accumulated in the host DNA-membrane complex. These results suggest that when phi X174 DNA penetrated into cells in the early phase of infection, single-stranded circular DNA was converted to parental RFI at a wall/membrane adhesion region and migrated to the cytoplasmic membrane fraction, where the parental RF could serve as a template in the replication of progeny RF.  相似文献   

20.
Bacteriophage phi X174 encoded gene A protein is an enzyme required for initiation and termination of successive rounds of rolling circle phi X DNA replication. This enzyme catalyses cleavage and ligation of a phosphodiester bond between nucleotide residues G and A at the phi X origin. The cleavage reaction which occurs during initiation involves formation of a free GOH residue at one end and a covalent bond between tyrosine-OH of the gene A protein and 5' phosphate of the A residue, at the other end of the cleavage site. During termination the covalently bound gene A protein cleaves the phosphodiester bond between G and A at the regenerated origin and ligates the 3' and 5' ends of the displaced genome-length viral DNA to form a circle. Since tyrosyl-OH mediated rearrangements of phosphodiester bonds in DNA may also apply to other enzymes involved in replication or recombination such as topoisomerases we have studied this interesting mechanism in greater detail. Analysis of 32P-labelled gene A protein-DNA complex by tryptic digestion followed by sequencing of 32P-containing peptides showed that two tyrosyl residues in the repeating sequence tyr-val-ala-lys-tyr-val-asn-lys participate in phosphodiester bond cleavage. Either one of these tyrosyl residues can function as the acceptor of the DNA chain. In an alpha-helix the side chains of these tyrosyl residues are in juxtaposition. An enzymatic mechanism is proposed in which these two tyrosyl-OH groups participate in an alternating manner in successive cleavage and ligations which occur during phosphodiester bond rearrangements of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号