首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intra-phyletic relationships of sipunculan worms were analyzed based on DNA sequence data from four gene regions and 58 morphological characters. Initially we analyzed the data under direct optimization using parsimony as optimality criterion. An implied alignment resulting from the direct optimization analysis was subsequently utilized to perform a Bayesian analysis with mixed models for the different data partitions. For this we applied a doublet model for the stem regions of the 18S rRNA. Both analyses support monophyly of Sipuncula and most of the same clades within the phylum. The analyses differ with respect to the relationships among the major groups but whereas the deep nodes in the direct optimization analysis generally show low jackknife support, they are supported by 100% posterior probability in the Bayesian analysis. Direct optimization has been useful for handling sequences of unequal length and generating conservative phylogenetic hypotheses whereas the Bayesian analysis under mixed models provided high resolution in the basal nodes of the tree.  相似文献   

2.
Two different methods of using paralogous genes for phylogenetic inference have been proposed: reconciled trees (or gene tree parsimony) and uninode coding. Gene tree parsimony suffers from 10 serious problems, including differential weighting of nucleotide and gap characters, undersampling which can be misinterpreted as synapomorphy, all of the characters not being allowed to interact, and conflict between gene trees being given equal weight, regardless of branch support. These problems are largely avoided by using uninode coding. The uninode coding method is elaborated to address multiple gene duplications within a single gene tree family and handle problems caused by lack of gene tree resolution. An example of vertebrate phylogeny inferred from nine genes is reanalyzed using uninode coding. We suggest that uninode coding be used instead of gene tree parsimony for phylogenetic inference from paralogous genes.  相似文献   

3.
Angiosperm phylogeny based on matK sequence information   总被引:2,自引:0,他引:2  
Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster than the widely used plastid genes rbcL and atpB. The MP and BI trees are highly congruent. The robustness of the strict consensus tree supercedes all individual gene analyses and is comparable only to multigene-based phylogenies. Of the 385 nodes resolved, 79% are supported by high jackknife values, averaging 88%. Amborella is sister to the remaining angiosperms, followed by a grade of Nymphaeaceae and Austrobaileyales. Bayesian inference resolves Amborella + Nymphaeaceae as sister to the rest, but with weak (0.42) posterior probability. The MP analysis shows a trichotomy sister to the Austrobaileyales representing eumagnoliids, monocots + Chloranthales, and Ceratophyllum + eudicots. The matK gene produces the highest internal support yet for basal eudicots and, within core eudicots, resolves a crown group comprising Berberidopsidaceae/Aextoxicaceae, Santalales, and Caryophyllales + asterids. Moreover, matK sequences provide good resolution within many angiosperm orders. Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperm phylogenetics and provide additional insights into angiosperm evolution.  相似文献   

4.
Sensitivity analysis provides a way to measure robustness of clades in sequence‐based phylogenetic analyses to variation in alignment parameters rather than measuring their branch support. We compared three different approaches to multiple sequence alignment in the context of sensitivity analysis: progressive pairwise alignment, as implemented in MUSCLE; simultaneous multiple alignment of sequence fragments, as implemented in DCA; and direct optimization followed by generation of the implied alignment(s), as implemented in POY. We set out to determine the relative sensitivity of these three alignment methods using rDNA sequences and randomly generated sequences. A total of 36 parameter sets were used to create the alignments, varying the transition, transversion, and gap costs. Tree searches were performed using four different character‐coding and weighting approaches: the cost function used for alignment or equally weighted parsimony with gap positions treated as missing data, separate characters, or as fifth states. POY was found to be as sensitive, or more sensitive, to variation in alignment parameters than DCA and MUSCLE for the three empirical datasets, and POY was found to be more sensitive than MUSCLE, which in turn was found to be as sensitive, or more sensitive, than DCA when applied to the randomly generated sequences when sensitivity was measured using the averaged jackknife values. When significant differences in relative sensitivity were found between the different ways of weighting character‐state changes, equally weighted parsimony, for all three ways of treating gapped positions, was less sensitive than applying the same cost function used in alignment for phylogenetic analysis. When branch support is incorporated into the sensitivity criterion, our results favour the use of simultaneous alignment and progressive pairwise alignment using the similarity criterion over direct optimization followed by using the implied alignment(s) to calculate branch support.  相似文献   

5.
Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements. J. Exp. Zool. ( Mol. Dev. Evol.) 285:128-139, 1999.  相似文献   

6.
Indels in DNA sequences frequently affect more than a single nucleotide, creating problems for alignment, character coding and phylogenetic analysis. However, the size and frequency of multiple‐residue indels is not usually tested, and with popular alignment packages their reconstruction is indirectly acheived by reducing the affine (gap extension) cost. We explored the length distribution of indels in intron sequences of the gene Mp20 by modifying the gap opening and gap extension costs. Given a “known” tree for the study group, global homology levels were greatest under low gap cost, with gap extension costs of roughly 0.4‐fold the opening cost. Different approaches to gap coding and weighting suggested that taxonomic congruence was correlated with high frequencies of multiple‐position indels, with a maximum indel length of 2–5 bp and few indels above 15 bp, but also including a proportion of indels > 100 bp. Only a small minority of indels could be reconstructed as single‐position indels. Consequently, tree topologies improved when homologous multinucleotide indels were recoded as binary characters which are otherwise highly homoplastic and weighted characters in single‐position coding. In tree‐generating alignment procedures as implemented in POY, where gap penalty determines the character weight during tree search, the problem of assigning inappropriately high weight to multiple‐residue indels could partly be overcome by setting the extension costs to about 0.4‐fold lower than gap opening costs. We conclude that multiple consecutive gap positions are not independent characters and hence methods for parsimony reconstruction of long indels are required. Finally, we also observed a general lack of correlation between taxonomic and character congruence, demonstrating the difficulties of applying congruence criteria to decide among competing alignments. This highlights the value of recent model‐based alignment procedures which can implement the statistical distributions of indel size classes, and do not rely on potentially circular strategies for optimizing overall congruence. © The Willi Hennig Society 2006.  相似文献   

7.
Many phylogenetic analyses that include numerous terminals but few genes show high resolution and branch support for relatively recently diverged clades, but lack of resolution and/or support for "basal" clades of the tree. The various benefits of increased taxon and character sampling have been widely discussed in the literature, albeit primarily based on simulations rather than empirical data. In this study, we used a well-sampled gene-tree analysis (based on 100 mitochondrial genomes of higher teleost fishes) to test empirically the efficiency of different methods of data sampling and phylogenetic inference to "correctly" resolve the basal clades of a tree (based on congruence with the reference tree constructed using all 100 taxa and 7990 characters). By itself, increased character sampling was an inefficient method by which to decrease the likelihood of "incorrect" resolution (i.e., incongruence with the reference tree) for parsimony analyses. Although increased taxon sampling was a powerful approach to alleviate "incorrect" resolution for parsimony analyses, it had the general effect of increasing the number of, and support for, "incorrectly" resolved clades in the Bayesian analyses. For both the parsimony and Bayesian analyses, increased taxon sampling, by itself, was insufficient to help resolve the basal clades, making this sampling strategy ineffective for that purpose. For this empirical study, the most efficient of the six approaches considered to resolve the basal clades when adding nucleotides to a dataset that consists of a single gene sampled for a small, but representative, number of taxa, is to increase character sampling and analyze the characters using the Bayesian method.  相似文献   

8.
To test whether gaps resulting from sequence alignment contain phylogenetic signal concordant with those of base substitutions, we analyzed the occurrence of indel mutations upon a well-resolved, substitution-based tree for three nuclear genes in bumble bees (Bombus, Apidae: Bombini). The regions analyzed were exon and intron sequences of long-wavelength rhodopsin (LW Rh), arginine kinase (ArgK), and elongation factor-1alpha (EF-1alpha) F2 copy genes. LW Rh intron had only a few uninformative gaps, ArgK intron had relatively long gaps that were easily aligned, and EF-1alpha intron had many short gaps, resulting in multiple optimal alignments. The unambiguously aligned gaps within ArgK intron sequences showed no homoplasy upon the substitution-based tree, and phylogenetic signals within ambiguously aligned regions of EF-1alpha intron were highly congruent with those of base substitutions. We further analyzed the contribution of gap characters to phylogenetic reconstruction by incorporating them in parsimony analysis. Inclusion of gap characters consistently improved support for nodes recovered by substitutions, and inclusion of ambiguously aligned regions of EF-1alpha intron resolved several additional nodes, most of which were apical on the phylogeny. We conclude that gaps are an exceptionally reliable source of phylogenetic information that can be used to corroborate and refine phylogenies hypothesized by base substitutions, at least at lower taxonomic levels. At present, full use of gaps in phylogenetic reconstruction is best achieved in parsimony analysis, pending development of well-justified and generally applicable methods for incorporating indels in explicitly model-based methods.  相似文献   

9.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

10.
One of the lasting controversies in phylogenetic inference is the degree to which specific evolutionary models should influence the choice of methods. Model‐based approaches to phylogenetic inference (likelihood, Bayesian) are defended on the premise that without explicit statistical models there is no science, and parsimony is defended on the grounds that it provides the best rationalization of the data, while refraining from assigning specific probabilities to trees or character‐state reconstructions. Authors who favour model‐based approaches often focus on the statistical properties of the methods and models themselves, but this is of only limited use in deciding the best method for phylogenetic inference—such decision also requires considering the conditions of evolution that prevail in nature. Another approach is to compare the performance of parsimony and model‐based methods in simulations, which traditionally have been used to defend the use of models of evolution for DNA sequences. Some recent papers, however, have promoted the use of model‐based approaches to phylogenetic inference for discrete morphological data as well. These papers simulated data under models already known to be unfavourable to parsimony, and modelled morphological evolution as if it evolved just like DNA, with probabilities of change for all characters changing in concert along tree branches. The present paper discusses these issues, showing that under reasonable and less restrictive models of evolution for discrete characters, equally weighted parsimony performs as well or better than model‐based methods, and that parsimony under implied weights clearly outperforms all other methods.  相似文献   

11.
Abstract: The ability of the internal transcribed spacers (ITS regions) of ribosomal DNA to resolve phylogenetic relationships within the euascomycetous order Arthoniales, focusing on the family Roccellaceae was investigated. The effect of alignment on phylogenetic hypotheses was evaluated. A data matrix from the ITS regions was constructed from 33 specimens representing 14 genera, including the outgroup Arthothelium spectabile. Six different alignments were analysed cladistically using parsimony jackknifing. Most groups in the six trees were congruent and well supported under the different alignment settings. In a conservative analysis, where only unambiguously alignable regions were included, the resolution was low. These results indicate that the ITS regions contain phylogenetic structure, and all information, including the variable regions, should be utilised. A data matrix from the SSU rDNA sequences was constructed for the same taxa. The SSU rDNA tree was less resolved than the ITS trees. There were only minor conflicts between the two sources of data and an incongruence test confirmed that the ITS and SSU rDNA data matrices were not significantly incongruent. The six differently aligned data matrices generated from the ITS regions were each combined with the SSU rDNA data. Simultaneous analysis of the combined data sets is the best approach as it uses all available evidence. As with the ITS trees, most groups in the combined trees were congruent and well supported. The SSU rDNA provided resolution within one clade, otherwise the ITS sequences provided most of the signal in the combined analysis, both at the basal nodes and at the tips of the tree. Molecular data clearly indicates that the fruticose/crustose habits have evolved multiple times even in comparatively small groups as in the family Roccellaceae and that the characters such as fruticose-crustose may be overemphasized in morphological analyses.  相似文献   

12.
AFLPs (and to a lesser extent ISSRs and RAPDs) are increasingly being used for phylogenetic inference among closely related species. Presence/absence characters for each AFLP allele treat all absences as homologous to one another. With three or more alleles, terminals are grouped by their shared absence of alleles in character-based phylogenetic-inference methods in a manner that is not redundant with their shared presence of an alternative allele. We conducted simulations to quantify how severe the negative effect of using presence/absence characters of individual bands is for phylogenetic inference relative to standard multistate characters. We examined alternative tree topologies, relative branch lengths, numbers of characters, rates of evolution, and numbers of alternative alleles, using both parsimony and Nei-and-Li distance analyses. Multistate parsimony generally outperformed presence/absence parsimony, which in turn outperformed Nei-and-Li distance. Increasing the character-state space (i.e., the number of alternative character states available) was found to be advantageous for all three methods of analysis examined, but was most advantageous for multistate parsimony. However, the advantage of multistate parsimony relative to Nei-and-Li distance decreased when applied to more divergent characters. More parsimony-informative variation generally alleviated the problem associated with scoring multistate characters as presence/absence characters. The ensemble consistency index was lower for presence/absence characters relative to multistate characters.  相似文献   

13.
Quantifying branch support using the bootstrap and/or jackknife is generally considered to be an essential component of rigorous parsimony and maximum likelihood phylogenetic analyses. Previous authors have described how application of the frequency-within-replicates approach to treating multiple equally optimal trees found in a given bootstrap pseudoreplicate can provide apparent support for otherwise unsupported clades. We demonstrate how a similar problem may occur when a non-representative subset of equally optimal trees are held per pseudoreplicate, which we term the undersampling-within-replicates artifact. We illustrate the frequency-within-replicates and undersampling-within-replicates bootstrap and jackknife artifacts using both contrived and empirical examples, demonstrate that the artifacts can occur in both parsimony and likelihood analyses, and show that the artifacts occur in outputs from multiple different phylogenetic-inference programs. Based on our results, we make the following five recommendations, which are particularly relevant to supermatrix analyses, but apply to all phylogenetic analyses. First, when two or more optimal trees are found in a given pseudoreplicate they should be summarized using the strict-consensus rather than frequency-within-replicates approach. Second jackknife resampling should be used rather than bootstrap resampling. Third, multiple tree searches while holding multiple trees per search should be conducted in each pseudoreplicate rather than conducting only a single search and holding only a single tree. Fourth, branches with a minimum possible optimized length of zero should be collapsed within each tree search rather than collapsing branches only if their maximum possible optimized length is zero. Fifth, resampling values should be mapped onto the strict consensus of all optimal trees found rather than simply presenting the ≥ 50% bootstrap or jackknife tree or mapping the resampling values onto a single optimal tree.  相似文献   

14.
The phylogenetic placement of the monotypic crab plover Dromasardeola (Aves, Charadriiformes) remains controversial. Phylogenetic analysis of anatomical and behavioral traits using phenetic and cladistic methods of tree inference have resulted in conflicting tree topologies, suggesting a close association of Dromas to members of different suborders and lineages within Charadriiformes. Here, we revisited the issue by applying Bayesian and parsimony methods of tree inference to 2,012 anatomical and 5,183 molecular characters to a set of 22 shorebird genera (including Turnix). Our results suggest that Bayesian analysis of anatomical characters does not resolve the phylogenetic relationship of shorebirds with strong statistical support. In contrast, Bayesian and parsimony tree inference from molecular data provided much stronger support for the phylogenetic relationships within shorebirds, and support a sister relationship of Dromas to Glareolidae (pratincoles and coursers), in agreement with previously published DNA-DNA hybridization studies.  相似文献   

15.
In this study, we used an empirical example based on 100 mitochondrial genomes from higher teleost fishes to compare the accuracy of parsimony-based jackknife values with Bayesian support values. Phylogenetic analyses of 366 partitions, using differential taxon and character sampling from the entire data matrix of 100 taxa and 7,990 characters, were performed for both phylogenetic methods. The tree topology and branch-support values from each partition were compared with the tree inferred from all taxa and characters. Using this approach, we quantified the accuracy of the branch-support values assigned by the jackknife and Bayesian methods, with respect to each of 15 basal clades. In comparing the jackknife and Bayesian methods, we found that (1) both measures of support differ significantly from an ideal support index; (2) the jackknife underestimated support values; (3) the Bayesian method consistently overestimated support; (4) the magnitude by which Bayesian values overestimate support exceeds the magnitude by which the jackknife underestimates support; and (5) both methods performed poorly when taxon sampling was increased and character sampling was not increases. These results indicate that (1) the higher Bayesian support values are inappropriate (in magnitude), and (2) Bayesian support values should not be interpreted as probabilities that clades are correctly resolved. We advocate the continued use of the relatively conservative bootstrap and jackknife approaches to estimating branch support rather than the more extreme overestimates provided by the Markov Chain Monte Carlo-based Bayesian methods.  相似文献   

16.
Phylogenetic analyses using genome-scale data sets must confront incongruence among gene trees, which in plants is exacerbated by frequent gene duplications and losses. Gene tree parsimony (GTP) is a phylogenetic optimization criterion in which a species tree that minimizes the number of gene duplications induced among a set of gene trees is selected. The run time performance of previous implementations has limited its use on large-scale data sets. We used new software that incorporates recent algorithmic advances to examine the performance of GTP on a plant data set consisting of 18,896 gene trees containing 510,922 protein sequences from 136 plant taxa (giving a combined alignment length of >2.9 million characters). The relationships inferred from the GTP analysis were largely consistent with previous large-scale studies of backbone plant phylogeny and resolved some controversial nodes. The placement of taxa that were present in few gene trees generally varied the most among GTP bootstrap replicates. Excluding these taxa either before or after the GTP analysis revealed high levels of phylogenetic support across plants. The analyses supported magnoliids sister to a eudicot + monocot clade and did not support the eurosid I and II clades. This study presents a nuclear genomic perspective on the broad-scale phylogenic relationships among plants, and it demonstrates that nuclear genes with a history of duplication and loss can be phylogenetically informative for resolving the plant tree of life.  相似文献   

17.
Phylogenetic analyses of non-protein-coding nucleotide sequences such as ribosomal RNA genes, internal transcribed spacers, and introns are often impeded by regions of the alignments that are ambiguously aligned. These regions are characterized by the presence of gaps and their uncertain positions, no matter which optimization criteria are used. This problem is particularly acute in large-scale phylogenetic studies and when aligning highly diverged sequences. Accommodating these regions, where positional homology is likely to be violated, in phylogenetic analyses has been dealt with very differently by molecular systematists and evolutionists, ranging from the total exclusion of these regions to the inclusion of every position regardless of ambiguity in the alignment. We present a new method that allows the inclusion of ambiguously aligned regions without violating homology. In this three-step procedure, first homologous regions of the alignment containing ambiguously aligned sequences are delimited. Second, each ambiguously aligned region is unequivocally coded as a new character, replacing its respective ambiguous region. Third, each of the coded characters is subjected to a specific step matrix to account for the differential number of changes (summing substitutions and indels) needed to transform one sequence to another. The optimal number of steps included in the step matrix is the one derived from the pairwise alignment with the greatest similarity and the least number of steps. In addition to potentially enhancing phylogenetic resolution and support, by integrating previously nonaccessible characters without violating positional homology, this new approach can improve branch length estimations when using parsimony.  相似文献   

18.
Martin FN  Tooley PW 《Mycologia》2003,95(2):269-284
The phylogenetic relationships of 51 isolates representing 27 species of Phytophthora were assessed by sequence alignment of 568 bp of the mitochondrially encoded cytochrome oxidase II gene. A total of 1299 bp of the cytochrome oxidase I gene also were examined for a subset of 13 species. The cox II gene trees constructed by a heuristic search, based on maximum parsimony for a bootstrap 50% majority-rule consensus tree, revealed 18 species grouping into seven clades and nine species unaffiliated with a specific clade. The phylogenetic relationships among species observed on cox II gene trees did not exhibit consistent similarities in groupings for morphology, pathogenicity, host range or temperature optima. The topology of cox I gene trees, constructed by a heuristic search based on maximum parsimony for a bootstrap 50% majority-rule consensus tree for 13 species of Phytophthora, revealed 10 species grouping into three clades and three species unaffiliated with a specific clade. The groupings in general agreed with what was observed in the cox II tree. Species relationships observed for the cox II gene tree were in agreement with those based on ITS regions, with several notable exceptions. Some of these differences were noted in species in which the same isolates were used for both ITS and cox II analysis, suggesting either a differential rate of evolutionary divergence for these two regions or incorrect assumptions about alignment of ITS sequences. Analysis of combined data sets of ITS and cox II sequences generated a tree that did not differ substantially from analysis of ITS data alone, however, the results of a partition homogeneity test suggest that combining data sets may not be valid.  相似文献   

19.
Rapidly evolving, indel-rich phylogenetic markers play a pivotal role in our understanding of the relationships at multiple levels of the tree of life. There is extensive evidence that indels provide conserved phylogenetic signal, however, the range of phylogenetic depths for which gaps retain tree signal has not been investigated in detail. Here we address this question using the fungal internal transcribed spacer (ITS), which is central in many phylogenetic studies, molecular ecology, detection and identification of pathogenic and non-pathogenic species. ITS is repeatedly criticized for indel-induced alignment problems and the lack of phylogenetic resolution above species level, although these have not been critically investigated. In this study, we examined whether the inclusion of gap characters in the analyses shifts the phylogenetic utility of ITS alignments towards earlier divergences. By re-analyzing 115 published fungal ITS alignments, we found that indels are slightly more conserved than nucleotide substitutions, and when included in phylogenetic analyses, improved the resolution and branch support of phylogenies across an array of taxonomic ranges and extended the resolving power of ITS towards earlier nodes of phylogenetic trees. Our results reconcile previous contradicting evidence for the effects of data exclusion: in the case of more sophisticated indel placement, the exclusion of indel-rich regions from the analyses results in a loss of tree resolution, whereas in the case of simpler alignment methods, the exclusion of gapped sites improves it. Although the empirical datasets do not provide to measure alignment accuracy objectively, our results for the ITS region are consistent with previous simulations studies alignment algorithms. We suggest that sophisticated alignment algorithms and the inclusion of indels make the ITS region and potentially other rapidly evolving indel-rich loci valuable sources of phylogenetic information, which can be exploited at multiple taxonomic levels.  相似文献   

20.
Tanyproctini (Melolonthinae) is a large group of chafers within the pleurostict Scarabaeidae that shows an enormous morphological diversity and variation. However, their morphology based definition appears to be mainly based on presumably plesiomorphic characters. Here, we investigate the phylogeny of this interesting lineage with a three‐gene data set using partial gene sequences of 28S rRNA, cytochrome c oxidase I (cox1) and 16S rRNA (rrnL). Our data set comprised 191 species of all major lineages of pleurostict scarabs. Combined analyses of the 2,070 base pairs alignment with maximum‐likelihood and Bayesian tree inference always recovered Tanyproctini to be highly polyphyletic. Tests of an alternative topology with constrained monophyly of Tanyproctini using CONSEL and IQ‐TREE were not found to be more likely than the unconstrained tree topology. Instead, Tanyproctini was split into six independent lineages under the current taxon sampling that were scattered throughout diverse parts of the pleurostict tree. The fact that numerous smaller chafer lineages exist beside several evolutionary successful and large lineages, highlights the complexity of the pleurosticts’ evolutionary history. The resulting tree topologies imply the need for a thorough revision of tribal classification within Melolonthinae lineages to accommodate the polyphyly of Tanyproctini. However, a revision of classification would be premature due to low support of most relevant branches, instable tree topologies among different tree searches, and due to a still very incomplete representation of Tanyproctini lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号