首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligand binding studies demonstrated that isolated rat Kupffer cells possess high affinity binding sites for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, AGEPC). AGEPC binding reached saturation within 10 min at 25 degrees C and was reversible. A Scatchard analysis revealed a single class of AGEPC receptors numbering about 10,600 sites/cell and possessing a dissociation constant of 0.45 nM. Similar values for the dissociation constant for AGEPC (0.12 and 0.34 nM) were obtained independently by kinetic analysis of specific AGEPC binding. AGEPC binding was stereospecific and was inhibited by Zn2+ and AGEPC receptor antagonists including BN52021 and U66985. The AGEPC receptor was functionally active since it was shown to mediate arachidonic acid release and eicosanoid production in Kupffer cells, and these events were inhibited by AGEPC receptor antagonist BN52021. The receptor-mediated arachidonic acid release was extracellular calcium-dependent and was abolished by calcium channel blocker prenylamine and by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, indicating that calcium influx through a receptor-regulated calcium channel in the plasma membrane is involved in the AGEPC-induced arachidonic acid release. It is suggested that rat Kupffer cells have specific and functionally active AGEPC receptors which are involved in signaling mechanisms which govern the production of several other autacoid-type mediators in the liver.  相似文献   

2.
The lipid mediator platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, AGEPC) has been shown to elicit several important biochemical signaling responses in mammalian cells, including polyphosphoinositide hydrolysis, arachidonic acid release/eicosanoid production, and protein tyrosine phosphorylation. In the present study, the roles of Ca2+ and protein kinase C (PKC), two signaling components of the phospholipase C pathway, in AGEPC-stimulated eicosanoid production and protein tyrosine phosphorylation, were investigated in cultured rat Kupffer cells. AGEPC at nanomolar concentrations induced an increase in intracellular calcium concentration ([Ca2+]i), stimulated membrane PKC activity, and resulted in protein tyrosine phosphorylation. The maximal increase in [Ca2+]i and membrane PKC activity in response to AGEPC were observed within 30-50 s, whereas the AGEPC-induced protein tyrosine phosphorylation reached maximal levels within 2-5 min. [Ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) but not 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8), an inhibitor of calcium release from intracellular compartments, nearly abolished the AGEPC-induced increase in [Ca2+]i suggesting involvement of extracellular calcium influx in this event. Both EGTA and TMB-8 abolished or inhibited AGEPC-stimulated protein tyrosine phosphorylation and eicosanoid formation, respectively. The calcium ionophore A23187 alone stimulated eicosanoid production and protein tyrosine phosphorylation with an identical pattern to that of AGEPC. Phorbol myristate acetate (PMA), an activator of PKC, which did not affect [Ca2+]i, mimicked the actions of AGEPC, stimulating eicosanoid production and promoting tyrosine phosphorylation of a set of proteins similar to those phosphorylated following AGEPC stimulation. AGEPC-enhanced tyrosine phosphorylation of some of the protein substrates and eicosanoid production were inhibited in cells "down-regulated" for PKC. Furthermore, both PMA- and AGEPC-stimulated eicosanoid production and protein tyrosine phosphorylation were attenuated or abolished by at least one of the PKC inhibitors, staurosporine, and calphostin C. Taken together, these results are consistent with the conclusions that: (a) AGEPC stimulates the phospholipase-mediated arachidonic acid release/eicosanoid synthesis cascade and protein tyrosine phosphorylation through extracellular Ca(2+)-dependent and PKC-dependent and -independent mechanism(s) and (b) the Ca(2+)-PKC interaction determines the efficacy of the AGEPC-stimulated cellular events.  相似文献   

3.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

4.
1-O-Alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) induced phosphorylation of two proteins having molecular masses of approximately 20- and 40-kDa in washed rabbit platelets in a concentration- and time-dependent manner. Sequential stimulation with AGEPC did not induce additional protein phosphorylation, supporting the concept of desensitization of the AGEPC receptors responsible for biological activity. AGEPC analogs 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphoric acid-6'-trimethylammonium hexyl ester and 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphoric acid-10'-trimethylammonium decyl ester (U66985 and U66982), containing polar head groups with methylene chain lengths of C6 and C10, did not cause protein phosphorylation, but they did inhibit the AGEPC-induced events. Thus protein phosphorylation is closely associated with the receptor-mediated stimulation of platelets and is a useful indicator of the signaling process initiated through the receptors. Other synthetic analogs of AGEPC such as rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl 2-thiazolioethyl phosphate and 1-(N-n-pentadecylcarbamoyloxy)-2-methoxy-rac-glycero-3-phosphochol ine (CV3988 and U68043) were also shown to be inhibitors of the AGEPC-induced protein phosphorylation. Inhibition by these analogs was specific for AGEPC since there was no observed effect of thrombin, ADP, 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and arachidonic acid-induced changes. The extent of inhibition was dependent on the concentration of AGEPC and its analogs and did not change with time after the addition of AGEPC. In platelets incubated with AGEPC analogs before and simultaneously with the addition of AGEPC, protein phosphorylation was prevented; however, addition of AGEPC to platelets shortly before the addition of these analogs showed a high response. In experiments where platelets were previously incubated with AGEPC analogs and washed with buffer containing 0.5% bovine serum albumin, AGEPC-induced protein phosphorylation was recovered to a level of 80%. These observations support the conclusion that AGEPC stimulates platelets through its specific receptor, and that the AGEPC analogs bind to the AGEPC receptor and block that pathway sensitive to AGEPC stimulation but not because of the desensitization of its receptor. On the other hand, in platelets where phosphorylation of the 40-kDa protein was induced by a 2-min preincubation with 3 X 10(-10) M TPA, 5 X 10(-10) M AGEPC-induced serotonin release decreased by 51% compared to a control value.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Regulation of platelet-activating factor receptors in rat Kupffer cells   总被引:1,自引:0,他引:1  
Ligand binding studies indicate that 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) down-regulates its own receptors on the plasma membrane of isolated rat Kupffer cells but has no significant effect on the binding affinity of the receptor for AGEPC. Exposure of isolated rat Kupffer cells to 10(-8) and 10(-6) M AGEPC resulted in a rapid, time-dependent reduction in the number of cell surface AGEPC receptors to a new steady state concentration (54.1 +/- 5.0% and 38.6 +/- 5.4% of control, respectively). During the observation period (6 h), the half-time of surface AGEPC receptors was about 60 and 45 min in the presence of 10(-8) and 10(-6) M AGEPC, respectively. Both the rate of loss and the maximal loss of the receptors were dependent upon the AGEPC concentration. With receptor synthesis inhibited by cycloheximide in the absence of AGEPC, the half-time of the surface AGEPC receptor was about 4 h, suggesting that AGEPC receptors are not recycled and that the loss of AGEPC receptors from the plasma membrane is accelerated by AGEPC binding. When incubated with Kupffer cells at 37 degrees C for 3 h, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (1.0 microM), an inactive metabolite of AGEPC, did not cause the loss of AGEPC receptors. Under the same conditions, AGEPC antagonists such as BN52021 (2 x 10(-5) M) or U66985 (2 x 10(-5) M) alone had no effect (97.0 +/- 3.9% of control for BN52021) or only a relatively slight effect (78.4 +/- 1.8% for U66985) on the number of surface AGEPC receptors. However, AGEPC antagonists inhibited the AGEPC-induced down-regulation of AGEPC receptors in a concentration-dependent manner, suggesting that the AGEPC-induced down-regulation of AGEPC receptors is a receptor-mediated process. The AGEPC-mediated decrease in receptor number on rat Kupffer cells is reversible. Upon removing AGEPC from the culture medium, about 67% of the lost receptors were replaced within 2 h. Cycloheximide, an inhibitor of protein synthesis, prevented the restoration of the AGEPC receptors. Similar results were obtained when Kupffer cells were incubated with Pronase followed by removing Pronase and reincubating the cells with or without cycloheximide. These observations suggest that the restored AGEPC receptor is newly synthesized rather than recycled. The present study demonstrates that under non-stimulatory (i.e. in the absence of AGEPC) conditions AGEPC receptors are lost from the plasma membrane and are reformed in the cells continuously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
Under conditions where optimal concentrations of arachidonic acid, phosphatidic acid, or the calcium ionophore A23187 caused release of 50-95% of calcium from preloaded platelet microsomes, basophil platelet activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, AGEPC) did not cause the release of calcium at concentrations as high as 2 X 10(-5) M. The failure to stimulate calcium release was not due to metabolism or inactivation of AGEPC. These results show that AGEPC is not a calcium ionophore and is unable to directly effect the release of calcium from microsomes by mechanisms other than ionophoric action. The increase in intracellular levels that occurs during AGEPC-induced platelet aggregation must be an indirect effect of the AGEPC.  相似文献   

8.
Recently, AGEPC (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was found to initiate contraction of ileal smooth muscle strips and to enhance Na+/Ca2+ exchange in ileal plasmalemmal vesicles. In the present study, the effects of the smooth muscle relaxant, isoproterenol, on Na+/Ca2+ exchange in rat ileal plasmalemmal vesicles was examined. In this preparation, Na+/Ca2+ exchange was stimulated 131 +/- 8% and 264 +/- 19% by addition of 50 nM and 100 nM AGEPC, respectively. Isoproterenol, a beta-adrenergic agonist, inhibited AGEPC stimulation of Na+/Ca2+ exchange in a dose- and time-dependent manner but had no effect on basal rates of Na+/Ca2+ antiport. At 1 microM, isoproterenol inhibited 86% of the Na+/Ca2+ exchange stimulated by 50 nM AGEPC. Vesicular cAMP levels were increased over 100% following the addition of 1 microM isoproterenol for 30 s. Inhibition of AGEPC-stimulated vesicular Na+/Ca2+ exchange and elevation of vesicular cAMP levels by isoproterenol was prevented by the beta-receptor antagonist propranolol (5 microM), demonstrating that these effects of isoproterenol were mediated by interaction with vesicular beta-adrenergic receptors. Additional studies with washed rabbit platelets demonstrated that isoproterenol inhibited AGEPC-induced aggregation and serotonin release. These effects of isoproterenol were dose- and time-dependent and were antagonized by propranolol. Isoproterenol had no effect on thrombin-induced aggregation and did not change appreciably platelet cAMP levels. Moreover, dibutyryl cAMP could not mimic the effect of isoproterenol to inhibit an AGEPC-induced aggregation. On a molar basis, the inhibitory effects of isoproterenol toward AGEPC action were greater in the ileal preparation than in the platelets. It is suggested that beta-adrenergic agonists may modulate AGEPC-induced ileal Na+/Ca2+ exchange and AGEPC-induced platelet aggregation through cAMP-dependent and-independent mechanisms, respectively.  相似文献   

9.
The relationship between 5-hydroxyeicosatetraenoic acid (5-HETE) and calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in prolactin (PRL) release was investigated in rat anterior pituitary cells. Arachidonic acid or 5-HETE, a 5-lipoxygenase metabolite of arachidonic acid, is known to cause a significant concentration-dependent increase in PRL release. Phorbol 12-myristate 13-acetate (PMA) and dioctanoyglycerol (diC8) have also been known to stimulate PRL release from pituitary cells, so we showed that these PRL releases were correlated with the activation of protein kinase C, that is, they induced dose-dependent translocation of protein kinase C from the cytosol to the membrane. Arachidonic acid, however, did not cause a significant change in the distribution of protein kinase C. We also showed that the PRL release induced by arachidonic acid and that induced by 5-HETE were additional to that by 100 nM PMA. Thus we suggested that the signals for the stimulation of PRL release sent by arachidonic acid and 5-HETE would be different from the signal sent through protein kinase C by PMA.  相似文献   

10.
Addition of IL-1 (interleukin-1) to human synovial fibroblasts radiolabelled with [3H]arachidonic acid caused a linear dose-dependent increase in arachidonic acid release and a transient rise in labelled diacylglycerol. Protein kinase C activators PMA 4-phorbol 12-myristate 13-acetate and DiC8 (1,2-dioctanoyl-sn-glycerol) also increased arachidonic acid release, but the time course observed with PMA was different from that of IL-1. When cultures were treated with PMA for 16-24 h to down regulate protein kinase C, the ability of IL-1 to increase arachidonic acid release persisted to the same extent as in nontreated cultures. In contrast, PMA pretreatment prevented the eight-fold stimulation of arachidonic acid release in response to PMA observed in cultures not previously exposed to PMA. To examine the role of other kinases in IL-1 stimulated arachidonic acid release, cultures were treated with H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine dichloride), H-8 (N-[2-(methylamino) ethyl]-5-isoquinolinesulphonamide dichloride), HA1004 (N-(2-guanidoinoethyl)-5-isoquinolinesulphonamide hydrochloride), and staurosporine. IL-1 stimulation of arachidonic acid release was blocked by H-7, H-8 and staurosporine. H-7 was a more potent inhibitor than H-8, suggesting that cAMP dependent kinase did not mediate IL-1 action. Addition of H-7 at various times following IL-1 decreased IL-1 stimulated arachidonic acid release, suggesting that continued protein kinase activity was necessary for IL-1 action. Cycloheximide and actinomycin D inhibited the stimulation of arachidonic acid release by IL-1, PMA or DiC8. The addition of cycloheximide or actinomycin D 15-45 min after IL-1 also inhibited IL-1 stimulated arachidonic acid release, indicating that continued protein synthesis was required for IL-1 action. These results suggest that IL-1 stimulation of acylhydrolyase activity in human synovial cells occurs by a mechanism requiring continued protein synthesis and protein kinase activity and that neither protein kinase C nor cAMP dependent protein kinase is involved.  相似文献   

11.
Pretreatment of human polymorphonuclear leukocytes with the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) enhances leukotriene biosynthesis in response to a receptor agonist (e.g. N-formyl-methionyl-leucyl-phenylalanine, fMLP) or a Ca(2+)-ionophore (e.g. ionomycin). This priming effect could be traced back to an elevated release of arachidonic acid from the phospholipid pools and hence an increased leukotriene biosynthesis by 5-lipoxygenase. Preincubation of polymorphonuclear leukocytes with GM-CSF did not influence the basal intracellular Ca2+ level and does not enhance cytosolic free calcium after stimulation with fMLP or ionomycin. Only a small increase in the second Ca2+ phase after receptor agonist stimulation was found. However, the Ca(2+)-threshold level necessary for the liberation of arachidonic acid by phospholipase A2 was decreased from 350-400 nM calcium in untreated cells to about 250 nM calcium in primed cells. This allows phospholipase A2 to be activated by a release of calcium from intracellular stores and by ionomycin concentrations which are ineffective in untreated cells. Protein biosynthesis inhibitors like actinomycin D (10 micrograms/ml) and cycloheximide (50 micrograms/ml) had no effect on the enhanced leukotriene biosynthesis in primed cells after stimulation with ionomycin. However, staurosporine (200 nM), an inhibitor of protein kinase C totally abolished the priming effect of GM-CSF after stimulation with ionomycin. The priming effect of GM-CSF could be mimicked by phorbol myristate acetate (PMA; 1 nM) and no additive or synergistic effect was found on leukotriene biosynthesis by simultaneous pretreatment with PMA and GM-CSF and stimulation with either fMLP or ionomycin. These results provide evidence that the enhanced arachidonic acid release in GM-CSF-primed polymorphonuclear leukocytes after stimulation with either fMLP or ionomycin involves activation of protein kinase C which, by a still unknown mechanism, reduces the Ca2+ requirement of phospholipase A2.  相似文献   

12.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

13.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

14.
We recently proposed that arachidonic acid serves as a second messenger within granulosa cells from the largest preovulatory follicle of the hen. The present studies were conducted to determine whether the inhibitory effects of arachidonic acid on LH-induced cAMP accumulation and on the ability of cells to convert 25-hydroxycholesterol to progesterone are mediated via the protein kinase C pathway. Furthermore, we determined the effects of arachidonic acid on plasminogen activator activity in granulosa cells. In the first experiment, the putative protein kinase C inhibitor, staurosporine, completely reversed the inhibitory effects of phorbol 12-myristate 13-acetate (PMA) on LH-promoted cAMP formation, but failed to overcome the inhibitory effects of arachidonic acid. Prolonged pretreatment (18 h) with 1.6 microM PMA depleted granulosa cells of both cytosolic and membrane-associated protein kinase C, and subsequently attenuated the inhibitory effects of PMA on LH-induced progesterone production; however, such depletion did not alter the inhibitory effects of phospholipase A2 (PLA2; an agent that increases intracellular levels of arachidonic acid). PMA, but not arachidonic acid, caused a rapid (within 2 min) translocation of protein kinase C from the cytosol to the membrane (a characteristic of agents that activate protein kinase C). Finally, both arachidonic acid and PLA2 inhibit plasminogen activator (PA) activity in a dose-dependent fashion, whereas activation of protein kinase C with PMA stimulates PA activity. Taken together, the data suggest that the effects of arachidonic acid in granulosa cells can occur independently of protein kinase C activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Adenosine potentiates preformed mediator release from mouse bone marrow-derived mast cells stimulated with specific Ag or the calcium ionophore A23187. When these mast cells were cultured for 30 to 120 min with the phorbol ester PMA (10(-8) or 10(-7) M), protein kinase C activity was increased and Ag-stimulated beta-hexosaminidase release was modestly inhibited, whereas A23187-stimulated release was synergistically enhanced. However, in both cases, exogenous adenosine failed to augment beta-hexosaminidase release. Overnight PMA exposure produced a decrease in protein kinase C activity and a decrease in both Ag- and A23187-stimulated preformed mediator release, as well as a lack of responsiveness to adenosine. This hyporesponsiveness could be reversed by 24 h after washing the cells free of PMA. The generation of the arachidonic acid metabolite leukotriene C4 was not altered by mast cell PMA exposure. The ability of adenosine to increase intracellular cAMP concentrations was modestly blunted by high doses of PMA, and PMA abrogated the increase in intracellular free calcium levels usually observed in cells stimulated with Ag in the presence of 10(-5) M adenosine. PMA exposure induces a hyporesponsiveness to adenosine in mast cells, either by a direct effect on protein kinase C activity and/or by an effect on adenosine receptor expression or recycling.  相似文献   

16.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

17.
We examined the effect of phorbol 12-myristate 13-acetate (PMA) on release of arachidonic acid (AA) and its metabolites in osteoblastic cells in an attempt to study mechanism of the regulation of phospholipase A2 (PLA2) activity. In the MOB 3-4-F2 cell line, a subclone of the clonal osteoblastic MOB 3-4 cell line, PMA (0.1-100 nM) changed its appearance and increased AA release in a dose- and time-dependent manner, whereas 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD) did not show a significant affect on the release. The addition of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, greater than or equal to 1.5 mM), a Ca2+ chelator, almost completely inhibited the PMA-induced AA release without affecting the intrinsic AA release. Preincubation with staurosporine (5-20 nM), an inhibitor of protein kinase C (PKC), partially (approximately 60%) blocked the AA release. However, 30-min preincubation with H-7 (50-200 microM), an inhibitor of PKC, failed to block the AA release. PMA, thus, appeared to stimulate AA release partially by a staurosporine-sensitive mechanism, probably an activation of PKC, in an external Ca(2+)-dependent manner. On the other hand, MOB 3-4 cells responded to PMA with an increased AA release but not with a drastic change of its shape. Both staurosporine and BAPTA exerted similar inhibitory effects. Prolonged exposure (48 h) to PMA (0.1-10 nM) enhanced DNA synthesis of MOB 3-4-F2 cells, but not MOB 3-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

19.
The effect of phorbol 12-myristate 13-acetate (PMA) on protein kinase C was studied by metabolically labeling GH3 cells with [35S]methionine and using a polyclonal antibody raised against rat brain protein kinase C to immunoprecipitate the enzyme. PMA accelerates the loss of immunologically reactive protein kinase C from the cells in a time- and dose-dependent manner. The half-life of the enzyme in cells treated with 400 nM PMA was 2 h whereas in control cells 60-70% of the enzyme was still detectable after 24 h. The concentration of PMA required to reduce cellular protein kinase C 50% after 24 h was 130 nM. PMA also induced the translocation of [35S]Met-labeled protein kinase C from the cytosol to the membranes in a concentration-dependent manner. Less protein kinase C was translocated to membranes when cells were treated with 20 nM PMA than when they were exposed to 400 nM PMA. In the latter case, most of the labeled protein kinase C became membrane-associated. Maximal translocation was evident after 15 min of incubation with either concentration of PMA and was followed by degradation of the membrane-associated enzyme. The rate of degradation of membrane-associated protein kinase C was the same with both concentrations of PMA. In cells treated with 20 nM PMA, disappearance of [35S]Met-labeled protein kinase C from the cytosolic fraction occurred in two phases, a rapid decrease characteristic of the membrane-associated enzyme, followed by a slower loss similar to that seen in control cells. The results indicate that turnover of protein kinase C is enhanced by membrane association.  相似文献   

20.
Tumor-promoting phorbol esters such as 4 beta-phorbol 12-myristate 13-acetate (PMA) have been shown to act synergistically with Ca2+ ionophores in cell activation, including stimulation of arachidonic acid metabolism. The effects of PMA on unstimulated and Ca2+ ionophore- or thrombin-stimulated PGI2 and platelet-activating factor (PAF) production in cultured bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) were investigated. Incubation of BAEC or HUVEC for 5-10 min with 100 nM PMA alone slightly increased basal PGI2 production. PGI2 production was rapidly stimulated in BAEC and HUVEC treated with the Ca2+ ionophore ionomycin. Preincubation of BAEC or HUVEC with 100 nM PMA for 5-10 min followed by ionomycin for up to 60 min enhanced PGI2 production up to 2.5-fold. Pretreatment with 100 nM PMA for 5 min also caused a 2-fold enhancement of thrombin-stimulated (1 U/ml) PGI2 production in HUVEC. The production of other prostaglandins, PGF2 alpha, PGE2, and PGD2, was also enhanced. In contrast, PMA had no effect on PGI2 synthesized directly from exogenous arachidonic acid or PGH2. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect. Since the biosyntheses of both PGI2 and PAF share a common first step, the hydrolysis of their respective phospholipid precursors by phospholipase A2, we investigated whether PMA preincubation could also enhance PAF biosynthesis. Incubation of HUVEC with 100 nM PMA alone had a negligible effect on PAF production. However, thrombin-stimulated (1 U/ml) PAF production was enhanced 2.6-fold by preincubation with 100 nM PMA. The protein kinase C inhibitors H-7 and staurosporine ablated the enhancing effect of PMA on thrombin-stimulated PGI2 and PAF biosynthesis. These results demonstrate that PMA can significantly alter the production of PGI2 and PAF in vascular endothelial cells, and suggest that protein kinase C activation modulates phospholipase A2 activity in this cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号