首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants were inoculated with a HUP− strain of Bradyrhizobium japonicum (Nitragin 61A118) and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol & Gerd.) Gerd. and Trappe or fertilized with KH2PO4 (nonVAM). They were grown for 50 days in a growth chamber and harvested over a 4-day drought period during which available soil water decreased to 0. Nodule P concentrations and P-use efficiency declined linearly with soil and root water content during the harvest period in both VAM and nonVAM plants. Nitrogenase activity, estimated from H2 evolution and C2H2 reduction data, was also a linear function of declining nodule P concentrations and CO2-exchange rates and showed simular patterns in both treatments. Hydrogen evolution and the relative efficiency of N2 fixation, on the other hand, reacted differently to increasing drought in VAM and nonVAM plants. Differences in the responses of nodule activity in VAM and nonVAM plants to drought are interpreted in terms of demand for nodule P and carbohydrates and of the effects of dehydration on O2 diffusion through nodule tissue.  相似文献   

2.
The objective of the work was to determine differences in plant response to geographic isolates of a vesicular-arbuscular mycorrhizal (VAM) fungus, and to demonstrate the need for such determinations in the selection of desirable host-endophyte combinations for practical applications. Soybean ( Glycine max (L.) Merr.) plants were inoculated with Bradyrhizobium japonicum and isolates of the VAM-fungal morphospecies Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, collected from an arid (AR), semiarid (SA) or mesic (ME) area. Inoculum potentials of the VAM-fungal isolates were determined and the inocula equalized, achieving the same level of root colonization (41%, P >0.05) at harvest (50 days). Plants of the three VAM treatments (AR, SA and ME) were evaluated against von VAM controls. Significant differences in plant response to colonization were found in dry mass, leaf K, N and P concentrations, and in root/shoot, nodule/root, root length/leaf area and root length/root mass ratios. The differences were most pronounced and consistent between the AR and all other treatments. Photosynthesis and nodule activity were higher ( P <0.05) in all VAM treatments, but only the AR plants had higher ( P <0.05) photosynthetic water-use efficiency than the controls. Nodule activity, evaluated by H2 evolution and C2H2 reduction, differed significantly between treatments. The results are discussed in terms of nutritional and non-nutritional effects of VAM colonization on the development and physiology of the tripartite soybean association in the light of intraspecific variability within the fungal endophyte.  相似文献   

3.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   

4.
Soybean [ Glycine max (L.) Merr. cv. Kent] plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe in pot cultures using an inert medium and a nutrient solution. Phosphorus was provided initially as 0, 25,50, 100 or 200 mg hydroxyapatite [HAP, Ca10(PO4)6(OH)2] per pot. Under the low (0 mg HAP) and high (100 and 200 mg HAP) P regimes, VAM plants showed 20, 25 and 38% growth retardation, respectively, relative to non-colonized controls. At 50 mg HAP, VAM plant growth was significantly enhanced (14%). Dry weight and P content of both VAM and control plants increased with increased P availability throughout the HAP gradient. Intraradical VAM fungal biomass increased linearly with increasing P availability. Extraradical VAM fungal biomass was smaller than the intraradical component of the fungus at the lowest and highest levels of P addition in the growth medium. The ratio of extra- to intraradical mycelium, a suggested index of VAM fungal effectiveness, was greatest for the 50 mg HAP treatment, coinciding with growth enhancement of the host plant. This enhanced growth of the host at an intermediate P level was apparently a result of increased P uptake by the endophyte.  相似文献   

5.
6.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

7.
8.
Plants of Lycopersicon esculentum Mill. P. I. 120262 show an increased phosphate uptake rate per unit dry weight of root after as little as one day of growth in solutions lacking phosphate. The reversibility of this response in plants experiencing various degrees of phosphate stress was investigated by measuring the depletion of phosphate from solutions over 3-h intervals. Measurements were made at three times in the first 30 h after phosphate was resupplied. Reversibility decreased as the level of phosphate stress increased. The phosphate uptake rate was returned to the level of controls after 30 h of phosphate resupply in plants grown without phosphate for one or three days. Plants grown without phosphate for five or seven days had uptake rates 26 and 40% higher than controls, respectively, after the same period of phosphate resupply. Internal phosphate concentrations after 30 h of phosphate resupply were equal to or greater than the controls in all plants. These results are consistent with a simple reversible feedback of phosphate status on phosphate transport in slightly stressed plants, but such a mechanism seems inadequate to explain the responses observed in more severely stressed plants.  相似文献   

9.
Purcell  Larry C.  de Silva  Manjula  King  C. Andy  Han Kim  Wook 《Plant and Soil》1997,196(1):101-113
Nitrogen fixation in soybean (Glycine max [L.] Merr.) is more sensitive to water deficits than many physiological processes and may therefore limit yield under nonirrigated conditions. Tolerance of nitrogen fixation to water deficits has been observed in the cultivar Jackson, however, the physiological basis for this is unclear. It was hypothesized that genotypes that could continue biomass production on limited soil water would prolong nitrogen fixation by continued photosynthate allocation to nodules. An initial greenhouse experiment compared biomass and N accumulation in six genotypes over an 8 d water deficit. Low stress intensity minimized genotypic expression of water-deficit tolerance; nevertheless, Jackson was clearly one of the most tolerant genotypes. In a second experiment, Jackson was compared to SCE82-303 at more severe stress levels. Biomass and N accumulation continued during water deficits for Jackson but ceased in SCE82-303. Individual nodule mass tended to increase during water deficits in Jackson and tended to decrease in SCE82-303, indicating greater allocation of photosynthate to Jackson's nodules in response to water deficits. Biomass accumulation of Jackson was contrasted with the USDA plant introduction (PI) 416937, which also has demonstrated tolerance to water deficits. For water-deficit treatments, total biomass accumulation was negligible for PI416937, but biomass accumulation continued at approximately 64% of the control treatment for Jackson. Transpirational losses for Jackson and PI416937 were approximately the same for the water-deficit treatment, indicating that Jackson had higher water use efficiency (WUE). Isotopic discrimination of 13C relative to12 C also indicated that Jackson had superior WUE during water deficits. Carbon-14 allocation in Jackson was compared to KS4895, a cultivar that was identified as sensitive to water deficits in an initial experiment. The comparison of water-deficit treatments of Jackson with KS4895 indicated that Jackson exported significantly greater amounts of14 C from labeled leaves and allocated approximately four times greater amounts of 14C per g of nodule. Results indicated that Jackson's sustained biomass production during water deficits resulted in the continued allocation of photosynthate to nodules and prolonged nitrogenase activity.  相似文献   

10.
11.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)不能进行光合作用,需要宿主植物提供碳水化合物供其完成整个生命周期,添加外源物质调控AMF和宿主植物的关系被认为是一种可行的措施。通过盆栽实验种植番茄,探索土施不同糖类对摩西球囊霉Glomus mosseae的侵染率、产孢能力和功能(宿主植物生长和养分)的影响。结果表明,添加葡萄糖和蔗糖可提高接种了摩西球囊霉的番茄的地上部生物量以及磷、钾吸收量,但对地上部氮吸收量影响不显著;添加麦芽糖和淀粉对地上部生物量及氮磷钾养分吸收量的影响均不显著。添加糖类处理,土壤碱解氮均有下降趋势;土壤速效磷、速效钾随着地上部磷和钾吸收量增加有下降趋势。糖类添加对土壤有机质没有影响。添加不同糖类均提高了AMF的侵染率,其中添加蔗糖处理的侵染率较单独施用摩西球囊霉菌处理增加了114%。单独施用摩西球囊霉菌剂处理土壤孢子数为10个/g,添加葡萄糖和淀粉处理的孢子数均为8个/g,添加蔗糖和麦芽糖处理的孢子数均为11个/g,添加糖类均对AMF产孢无显著影响。  相似文献   

12.
The effects of phosphorus (P) application and mycorrhizal inoculation on the root characteristics of subterranean clover and ryegrass were examined. Phosphorus application increased total root length, root surface area and root volume of both plant species. In contrast, mycorrhizal infection only affected the root characteristics of subterranean clover. Ryegrass took up more P than non-mycorrhizal subterranean clover at all levels of application. However, mycorrhizal infection only increased P uptake by subterranean clover and there was no difference in P uptake between ryegrass and mycorrhizal subterranean clover at low levels of P application. When the P uptake was expressed on the basis of any of the root characteristics, subterranean clover were superior to ryegrass suggesting that the greater uptake of P by ryegrass is not due to a higher efficiency in absorption of P from soil solution, but rather to a large root system.  相似文献   

13.
An assessment of the effects of arbuscular mycorrhizal (AM) infection on photosynthesis, carbon (C) allocation, translocation and biomass production of cucumber, grown in sand culture, was made using a previously determined phosphorus (P) supply (0·13 mol m?3 P) which had a significant impact on AM infection. Separation of a direct effect of AM infection from an indirect one due to an enhanced leaf P status was achieved using a comparable non‐mycorrhizal treatment (NAM + P) supplemented with extra P (0·19 mol m?3 P). Total leaf P concentration, specific leaf mass, photosynthetic capacity, and incorporation of 14C into non‐structural carbohydrate pools were dependent on leaf age. Both maximum and ambient photosynthetic rates were significantly higher in the youngest fully expanded leaves from AM and NAM + P plants which also had the higher leaf P concentrations. There were no differences in the total concentrations of starch, sucrose, raffinose or stachyose in young or old leaves among AM, non‐mycorrhizal (NAM) and NAM + P treatments. However, younger leaves of NAM plants showed a shift in 14C‐partitioning from stachyose and raffinose synthesis to starch accumulation. Determination of ADP‐glucose pyrophosphorylase (AGPase), sucrose synthase and sucrose phosphate synthase enzyme activities revealed that only AGPase activity was correlated with the increased incorporation rate of 14C into starch in young leaves of NAM plants. Although there were significant AM‐specific effects on C translocation to the root system, AM plants had similar rate of photosynthesis to NAM + P plants. These results suggest that the increase in photosynthetic rate in leaves of AM‐infected cucumber was due to an increased P status, rather than a consequence of a mycorrhizal ‘sink’ for assimilates.  相似文献   

14.
15.
Abstract

We tested the effect of root colonization of cucumber (Cucumis sativus L.) by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae on different parameters of a plant-thrips (Frankliniella occidentalis Pergande) interaction. In leaf disc bioassays, the feeding activity, the oviposition rate, the settling preference of adult females and the developmental time (first instar larva to adult) on leaves of mycorrhizal and non-mycorrhizal plants were studied. To distinguish between a nutritional effect through an improved phosphorous (P) status of the mycorrhizal plant and other effects caused by mycorrhization, non-mycorrhizal plants watered with a nutrient solution with (+P) or without P (?P) were included in the study. Mycorrhization did not affect any of the parameters on host acceptance tested, whereas on plants with a higher P-level the duration of the non-feeding stages (pronymphae, nymphae) of F. occidentalis was shortened, but all other developmental parameters were similar as in the control and the mycorrhizal plants. Our data indicate that the polyphagous thrips F. occidentalis is neither affected by mycorrhization of cucumber plants nor by enhanced P-levels.  相似文献   

16.
Two experiments were carried out to study physiological effects of vesicular-arbuseular mycorrhizal infection on Plantago major L., ssp. pleiosperma (Pilger). In the first experiment, infection by the Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe increased growth, shoot to root ratio, P concentrations in both shoot and roots and total uptake of P per plant. The percentages of dry matter in both shoot and roots were lower in mycorrhizal plants.
In the second experiment different P treatments were applied to both mycorrhizal and non-mycorrhizal P. major plants to separate any effects of mycorrhizal infection from increased uptake of P. In addition to the effects found in the first experiment, mycorrhizal, P, and mycorrhizal x P interaction effects were found on root respiration rate and the concentration of soluble sugars in the roots. No clear effects on total dry weight, N and starch concentrations in shoot and roots and sugar concentraion in the shoot were found. Irrespective of the mycorrhizal treatment, increased P concentration in the shoot correlated with an increased shoot to root ratio and root respiration rate, and a decreased percentage dry matter and sugar concentration in the roots. However, the root respiration rate and the P concentration in the roots of mycorrhizal plants were enhanced more than expected from the increased P concentrations in the shoots of these plants.  相似文献   

17.
Relations between cytokinin concentrations and effects of P and vesicular-arbuscular mycorrhizal (VAM) infection were investigated in Plantago major L. ssp. pleiosperma Pilger. Both mycorrhizal infection by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe and P addition increased the shoot to root ratio, specific leaf area (SLA), and P concentrations of shoot and roots, and decreased the percentage of dry matter in the shoot during the experiment. In general, P concentration in the shoot and roots of each treatment correlated positively with the shoot to root ratio and specific leaf area, and negatively with the percentage of dry matter in the shoot. Cytokinin concentrations in the tissue of shoots and roots were determined using an enzyme-linked immunosorbent assay. Concentrations of zeatin and zeatin-ribosides in the free base and nucleotide fractions had increased more after P addition than in the case of mycorrhizal infection in both shoot and roots, whereas the P concentrations had increased less. It is suggested that zeatin and zeatin-ribosides are not the primary growth-substances involved in mediating VAM effects.  相似文献   

18.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

19.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

20.
Pepper ( Capsicum annuum L.) plants with and without the VA-mycorrhizal fungus Ghmus deserticola Trappe. Bloss and Menge (VAM and NVAM. respectively), were drought acclimated by four drought cycles (DA) or kept well watered (NDA). All plants were then subjected to an additional drought followed by a 3-day irrigation recovery period. Measurements of water relations, gas exchange and carbohydrates were made at selected intervals throughout the drought cycles and recovery. To equalize growth and avoid higher P in VAM plants. NVAM plants received higher P fertilization. Consequently, similar transpirational surface and shoot mass were achieved in all treatments, but NVAM had a higher tissue P concentration than VAM plants. Plants that were either VAM or DA, but especially the VAM-DA plants, tended to be high in net photosynthetic flux (A), A per unit of tissue P concentration (A/P), stomatal conductance (g) or leaf turgor (Ψp) during high environmental stress or recovery from stress. During this time, NVAM-NDA plants had low A. A/P and leaf chlorophyll, but high soluble carbohydrate concentrations in their leaves. All VAM and DA plants had some osmotic adjustment compared to the NVAM-NDA plants, but VAM-DA plants had the most. Osmotic adjustment was not due to accumulation of soluble carbohydrate. The high turgor, A and g in the VAM-DA plants during and following environmental stress indicated superior drought resistance of these plants; however, osmotic adjustment was only apparent during recovery and cannot account for the observed drought resistance during environmental stress. Drought resistance of VAM-DA plants was not attributable to high leaf P concentration or confounded by differences in plant transpirational surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号