共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Characterization of the inward-rectifying potassium current in cat ventricular myocytes 总被引:5,自引:3,他引:5 下载免费PDF全文
Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+. 相似文献
3.
The whole-cell patch electrode voltage clamp technique was used to study the inactivation properties of the delayed rectifying potassium current of single cultured embryonic chick hepatocytes at 20 degrees C. The potassium current activates maximally within 250-500 ms of membrane depolarization, after which it decays with a monoexponential time course. Both steady-state activation and inactivation are voltage dependent. Steady-state inactivation declines from 100% at -5 mV to 0 near -70 mV. with half inactivation at -41 mV. At the resting potential (EM) of these cells (-21.5 +/- 6.0 mV, n = 36) 6-18% of the IK channels are not inactivated and less than 5% are open. Development and removal of inactivation follow single exponential time courses. The inactivation time constant attains a maximum of around 30 s at -35 mV and is sharply voltage dependent at the EM of these cells. Measurement of EM under current clamp shows random oscillations of 5-10 mV amplitude. We suggest that the voltage- and time-dependent properties of IK, in tandem with a time- and voltage-independent, non-selective current also seen here, would provide the mechanism for a fluctuating EM. 相似文献
4.
David A. Hart 《Cellular immunology》1981,57(1):209-218
Stimulation of hamster thymocytes, splenocytes, or lymph node cells occurred to a minimal extent in the absence of K+. This observation was found for stimulation by T-cell mitogens (phytohemagglutinin and concanavalin A), A B-cell mitogen (lipopolysaccharide), or antigen (KLH). Marginal restoration of the responses to these stimulants occurred in the presence of 0.1 mM K+ and responsiveness returned to near maximal levels on addition of 1 mM K+ to the cultures. Attempts to restore the responsiveness with other monovalent cations revealed an order of effectiveness of K+ ≥ Rb+ ? NH4+ ≥ Li+. At the 1 mM level K+ and Rb+ were equally effective in supporting stimulation by phytohemagglutinin while all concentrations of Li+ tested (0.1–10 mM) would not support stimulation. However, addition of Li+ to cultures reconstituted with 1 mM K+ or Rb+ revealed that this ion could enhance the phytohemagglutinin response by approximately 100% in the presence of K+ and only 30% in the presence of Rb+. These data support the hypotheses that the Na,K ATPase must be active for lymphocyte stimulation to occur and that some of the biological effects of Li+ on lymphocyte stimulation are mediated at the level of the Na,K ATPase. 相似文献
5.
Coupling of oxidative phosphorylation by monovalent cations 总被引:1,自引:0,他引:1
6.
Srinivas M Calderon DP Kronengold J Verselis VK 《The Journal of general physiology》2006,127(1):67-75
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+. 相似文献
7.
8.
Ca2+ transport by the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is sensitive to monovalent cations. Possible K+ binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca2+ transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca2+ transport correlated in most cases with their direct effects on SERCA. Choline+, however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca2+ transport. Of the monovalent cations tested, only Cs+ significantly affected the Hill coefficient of Ca2+ transport (nH). An increase in nH from ∼2 in K+ to ∼3 in Cs+ was seen in all of the forms of SERCA examined. The effects of Cs+ on the maximum velocity of Ca2+ uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K+ binding sites of the different forms of the protein. 相似文献
9.
Effects of mono- and multi-valent cations on the inward-rectifying potassium channel in isolated protoplasts from maize roots 总被引:2,自引:0,他引:2
Monica Bregante Armando Carpaneto Federica Pastorino F. Gambale 《European biophysics journal : EBJ》1997,26(5):381-391
Transport properties mediated by ionic channels were studied by the patch-clamp technique in protoplasts from cortical parenchyma
cells of maize roots (CPMR). While outward currents could be seen only occasionally, macroscopic voltage- and time-dependent
potassium-selective inward currents (IK+in) were frequently observed in the whole-cell configuration. These currents increased continuously as a function of K+ concentration (in the range 3 – 200 mm) and the slow-saturating macroscopic chord-conductance was fitted by a Michaelis-Menten function with Km = 195 ± 39 mm. Other ions, like sodium and lithium, did not permeate at all through the maize root inward-channel, or like ammonium (PNH4+/ PK+ = 0.16 0.25) and rubidium (PRb+/PK+≈ 0.10) displayed a very low permeability ratio. Up to 5 mm Rb+ did not induce any inhibition of the K+ inward current, whereas submillimolar concentrations of Cs+ were sufficient to block, in a voltage-dependent manner, the inward currents. A decrease of the external potassium concentration
favoured Cs+ inhibition (Km = 89 ± 6 μm and 26 ± 2 μm in 200 and 100 mm KCl, respectively). The potassium inward-currents were reversibly and consistently inhibited by submillimolar external concentrations
of the metal ions Ni2+, Zn2+ and Co2+, while 1 mm La3+ only slightly decreased (≈10%) both the single channel conductance (9.2 ± 1.2 pS in 100 mm potassium) and the macroscopic current. In contrast to the case with Cs+, inhibition induced by other metal ions did not show any voltage dependence. These results suggest that, as with animal potassium
channels, the inward channel of maize-root cortical cells has a narrow pore of permeation and metal ions decrease the K+ current, possibly by acting on binding sites located outside the pore.
Received: 21 February 1997 / Accepted: 27 May 1997 相似文献
10.
S Thompson 《The Journal of general physiology》1982,80(1):1-18
The blocking action of 4-aminopyridine (4-AP) and 3, 4-diaminopyridine (Di-AP) on transient potassium current (IA) in molluscan central neurons was studied in internal perfusion voltage-clamp experiments. Identical blocking effects were seen when the drugs were applied either externally or internally. It was found that aminopyridines have two kinds of effects on IA channels. The first involves block of open channels during depolarizing pulses and results in a shortening of the time to peak current and an increase in the initial rate of decay of current. This effect of the drug is similar to the block of delayed potassium current by tetraethylammonium (TEA). The other effect is a steady block that increases in strength during hyperpolarization, is removed by depolarization, and is dependent on the frequency of stimulation. The voltage dependence of steady state block approximates the voltage dependence of inactivation gating a changes e-fold in approximately 10 mV. These data suggest that the strength of block may depend on the state of IA gating such that the resting state of the channel with open inactivation gate is more susceptible to block than are the open or inactivated states. A multistate sequential model for IA gating and voltage-dependent AP block is developed. 相似文献
11.
Voltage-dependent block by tetrodotoxin of the sodium channel in rabbit cardiac Purkinje fibers. 总被引:4,自引:1,他引:4 下载免费PDF全文
E Carmeliet 《Biophysical journal》1987,51(1):109-114
The two-microelectrode, voltage-clamp technique was applied to rabbit cardiac Purkinje fibers to study the interaction of tetrodotoxin (TTX) with the slowly inactivating Na current. Binding of TTX to rested, inactivated, and activated channels was estimated by measuring the relative decrease of current at the beginning (rested and inactivated channels) and the end (activated channels) of a 1 s depolarizing clamp to -45 mV. The accelerated decline of the Na current in the presence of a submaximal dose of TTX was interpreted as an increase in blocking efficiency upon depolarization. The experiments show that activated as well as inactivated channels are more sensitive to TTX than are rested channels. The dissociation equilibrium constants for the three states are 3.5 X 10(-6) M for the rested, 0.94 X 10(-6) M for the activated, and 0.75 X 10(-6) M for the inactivated channels. The time course of activation block was dependent on TTX concentration. Rate constants for association and dissociation of the activated state are 1.3 X 10(6) M-1 X s-1 and 1.5 s-1, respectively. 相似文献
12.
Monovalent ion induced aggregation of the cardiolipin bilayer liposomes is studied. Derived threshold concentrations (Ck) stimulating fast aggregation testify that the order of effectiveness for monovalent cations to cause this process is: H+ greater than Na+ greater than Li+ greater than K+. The Ck is shown to be nonmonotonously dependent on the temperature discovering a maximum in the range approximately 30-40 degrees C. It is also shown that the liposomes preliminary temperature processing for two hours at approximately 70 degrees C as well as the liposomes incubation for several days at approximately 5 degrees C affect the Ck value. In both cases a considerable Ck increase is accompanied by almost two-fold increase of the lipid oxidation index. The studied process is reversible to both electrolyte concentration dilution and temperature changes. However, unlike the phosphatidylserine (PS) and phosphatidic acid (PA) liposomes the observed changes in the cardiolipin case proceeding considerably slower possibly indicate that the potential must be lower in its depth than that in the case of PS and/or PA. 相似文献
13.
Ancharida Svarachorn Atsuhiko Shinmyo Tetsuaki Tsuchido Mitsuo Takano 《Applied microbiology and biotechnology》1989,32(3):299-304
Summary Resting cell suspensions of seven Nocardia species catalyzed the production of 10-hydroxystearic acid from oleic acid. Nocardia cholesterolicum NRRL 5767 gave a good yield with optimum conditions at pH 6.5 and 40°C. Yields exceeding 90% can be obtained within 6 h with 0.1 g cells (dry weight) and 178 mg oleic acid in 10 ml of 0.05 M sodium phosphate buffer (pH 6.5). In addition, minor amounts of 10-ketostearic acid were formed as a by-product. The reaction proceeded via hydration of the double bond as shown by labeling experiments with deuterium oxide and 18O-labeled water. The system was specific for fatty acids with cis unsaturation at the 9 position.A part of this paper was presented at a poster session at the World Conference on Biotechnology for the Fats and Oils Industry, Hamburg, Federal Republic of Germany, September 1987, and at the 194th National American Chemical Society Meeting, New Orleans, September 1987RetiredThe mention of firm names or trade products does not imply that they are endorsed or recommended by USDA over other firms or similar products not mentioned 相似文献
14.
The effects of monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4(+)) on the thermal stability of RNA tertiary structure were investigated by UV melting. We show that with the RNA used here (nucleotides 1051-1108 of Escherichia coli 23 S rRNA with four base substitutions), monovalent cations and Mg(2+) compete in stabilizing the RNA tertiary structure, and that the competition takes place between two boundaries: one where Mg(2+) concentration is zero and the other where it is maximally stabilizing ("saturating"). The pattern of competition is the same for all monovalent cations and depends on the cation's ability to displace Mg(2+) from the RNA, its ability to stabilize tertiary structure in the absence of Mg(2+), and its ability to stabilize tertiary structure at saturating Mg(2+) concentrations. The stabilizing ability of a monovalent cation depends on its unhydrated ionic radius, and at a low monovalent cation concentration and saturating Mg(2+), there is a (calculated) net release of a single monovalent cation/RNA molecule when tertiary structure is denatured. The implications are that under these conditions there is at least one binding site for monovalent cations on the RNA, the site is specifically associated with formation of stable tertiary structure, K(+) is the most effective of the tested cations, and Mg(2+) appears ineffective at this site. At high ionic strength, and in the absence of Mg(2+), stabilization of tertiary structure is still monovalent-cation specific and ionic-radius dependent, but a larger number of cations ( approximately eight) are released upon RNA tertiary structure denaturation, and NH(4)(+) appears to be the most effective cation in stabilizing tertiary structure under these conditions. In the majority of the experiments, methanol was added as a cosolvent to the buffer. Its use allowed the examination of the behavior of monovalent ions under conditions where their effects would otherwise have been too weak to be observed. Methanol stabilizes tertiary but not secondary structure of the RNA. There was no evidence that it either causes qualitative changes in cation-binding properties of the RNA or a change in the pattern of monovalent cation/Mg(2+) competition. 相似文献
15.
The properties of the inward-rectifying potassium current (IK1) were studied in the single myocytes isolated from adult mouse ventricles by the whole-cell patch-damp technique for the first time. Most of the properties of IK1 including channel conductances, activation, inactivation, rectification and external K sensitivity in mouse ventricular myocyte were similar to those in other species, but the current-voltage (1-V) curve of mouse ventricular myocyte showed no negative slope, i.e the slope in the range of membrane potential 50 mV positive to the reversal potential (VRev) was virtually flat and remained at a low current level ((59±39) pA). Under the superfusion of Tyrode's solution with 3mmol/L K and 3mmol/L Cs , IK1 in the above region nearly decreased to zero, and then the early after-depolarization (EAD) occurred. The results suggest that this distinctive characteristic of IK1 in mouse ventricular myocyte may relate to the high susceptibility to EA0 in mouse myocardium. The inhibition of IK1 se 相似文献
16.
17.
Michael A. Gray Richard A. P. Montgomery Alan J. Williams 《The Journal of membrane biology》1985,88(1):85-95
Summary We have investigated the effect of the skeletal muscle relaxant succinyl choline (SC) on the conduction of potassium ions through a monovalent cation-selective channel present in the cardiac muscle sarcoplasmic reticulum membrane (CSR). This channel has been studied under voltage-clamp conditions following the fusion of purified CSR membrane vesicles with preformed planar phospholipid bilayers. The channel assumes a fixed orientation in the bilayer and displays two conducting states (B. Tomlins, A.J. Williams & R.A.P. Montgomery, 1984,J. Membrane Biol.
80: 191–199). SC blocks potassium conductance through the channel in a voltage-dependent manner. Block occurs from both sides of the channel, in both conducting states and is resolved as discrete flickering events. Although SC is capable of blocking potassium conductance from both sides of the membrane, block is asymmetric. The zero-voltage dissociation constant for block from the cis side of the membrane is approximately threefold lower than that from thetrans side. Block from thecis side displays a linear dependence on SC concentration for both open states and is competitive with potassium ions at saturating potassium activities, consistent with a singlesite blocking model. The degree of SC-induced block is also influenced by membrane surface charge. SC block differs from that previously described for bis quaternary ammonium (bis Qn) compounds such as decamethonium in that SC blocks preferentially from thecis side of the channel. 相似文献
18.
Di Cera E 《The Journal of biological chemistry》2006,281(3):1305-1308
Enzymes activated by monovalent cations are abundantly represented in plants and the animal world. They have evolved to exploit Na+ and K+, readily available in biological environments, as major driving forces for substrate binding and catalysis. Recent progress in the structural biology of such enzymes has answered long standing questions about the molecular mechanism of activation and the origin of monovalent cation selectivity. That enables a simple classification of these functionally diverse enzymes and reveals unanticipated connections with ion transporters. 相似文献
19.