首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Electron-transfer flavoprotein (ETF) serves as an intermediate electron carrier between primary flavoprotein dehydrogenases and terminal respiratory chains in mitochondria and prokaryotic cells. The three-dimensional structures of human and Paracoccus denitrificans ETFs determined by X-ray crystallography indicate that the 4'-hydroxyl of the ribityl side chain of FAD is hydrogen bonded to N(1) of the flavin ring. We have substituted 4'-deoxy-FAD for the native FAD and investigated the analog-containing ETF to determine the role of this rare intra-cofactor hydrogen bond. The binding constants for 4'-deoxy-FAD and FAD with the apoprotein are very similar, and the energy of binding differs by only 2 kJ/mol. The overall two-electron oxidation-reduction potential of 4'-deoxy-FAD in solution is identical to that of FAD. However, the potential of the oxidized/semiquinone couple of the ETF containing 4'-deoxy-FAD is 0.116 V less than the oxidized/semiquinone couple of the native protein. These data suggest that the 4'-hydoxyl-N(1) hydrogen bond stabilizes the anionic semiquinone in which negative charge is delocalized over the N(1)-C(2)O region. Transfer of the second electron to 4'-deoxy-FAD reconstituted ETF is extremely slow, and it was very difficult to achieve complete reduction of the flavin semiquinone to the hydroquinone. The turnover of medium chain acyl-CoA dehydrogenase with native ETF and ETF containing the 4'-deoxy analogue was essentially identical when the reduced ETF was recycled by reduction of 2,6-dichlorophenolindophenol. However, the steady-state turnover of the dehydrogenase with 4'-deoxy-FAD was only 23% of the turnover with native ETF when ETF semiquinone formation was assayed directly under anaerobic conditions. This is consistent with the decreased potential of the oxidized semiquinone couple of the analog-containing ETF. ETF containing 4'-deoxy-FAD neither donates to nor accepts electrons from electron-transfer flavoprotein ubiquinone oxidoreductase (ETF-QO) at significant rates (相似文献   

2.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

3.
Electron-transferring flavoprotein (ETF) and acyl dehydrogenases of pig liver mitochondria have been isolated in good yield by a new procedure. ETF and general acyl dehydrogenase appear homogenous, are free of reciprocal contamination, react with neither pyridine nucleotides not cytochrome c, and are completely dependent upon each other for reduction of dichlorophenol indophenol by acyl-CaA substrates. The properties of the present preparation (some of which differ significantly from those previously described) are presented. Sedimentation of ETF in 0.02 M KP-i yields a M-r for the native ETF of 58,00 plus or minus 3,000, whereas sedimentation of reduced and alkylated ETF in guanidine HCl yields a M-r of 26,000. Electrophoresis on sodium dodecyl sulfate gels in the presence or absence of mercaptoethanol gives a M-r of about 27,000 and flavin analysis gives a minimum molecular weight of about the same figure. Thus, ETF appears to contain one flavin (at least 90% FAD, by chromatographic and fluorescence characteristics) per 26,000 M-r, and therefore may be composed of two subunits with one flavin each. Sodium dodecyl sulfate gel electrophoresis of general acyl dehydrogenase in the absence of mercaptoethanol gives a band corresponding to a M-r of 84,000; in the presence of mercaptoethanol a band corresponding to a M-r of 42,000 is found. The minimum molecular weight based on flavin content is 40,500. These data considered in conjunction with previous reports from other laboratories, suggest a structure of four subunits per mol with one flavin per subunit..  相似文献   

4.
Electron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii. The purified ETF contained one mol FAD/mol ETF as the sole non-protein component and bound almost one mol of additional FAD. This preparation is a better subject for investigations of M. elsdenii ETF than the previously isolated ETF, which contains varying amounts of FAD and varying percentages of modified flavins such as 6-OH-FAD and 8-OH-FAD. The additionally bound FAD shows an anomalous absorption spectrum with strong absorption around 400 nm. This spectral change is not due to a chemical modification of the flavin ring because the flavin released by KBr or guanidine hydrochloride is normal FAD. It is also not due to unknown small molecules because the same spectrum appears when ETF is reconstituted from its guanidine-denatured subunits and FAD. A similar anomalous spectrum was observed for AMP-free pig ETF under acidic conditions, suggesting a common flavin environment between pig and M. elsdenii ETFs.  相似文献   

5.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.  相似文献   

6.
The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

7.
Formate dehydrogenase (NAD+ dependent) was isolated from the obligate methanotroph Methylosinus trichosporium OB3b. When the enzyme was isolated anaerobically, two forms of the enzyme were seen on native polyacrylamide gels, DE-52 cellulose and Sephacryl S-300 columns; they were approximately 315,000 and 155,000 daltons. The enzyme showed two subunits on sodium dodecyl sulfate-polyacrylamide gels. The Mr of the alpha-subunit was 53,800 +/- 2,800, and that of the beta-subunit was 102,600 +/- 3,900. The enzyme (Mr 315,000) was composed of these subunits in an apparent alpha 2 beta 2 arrangement. Nonheme iron was present at a concentration ranging from 11 to 18 g-atoms per mol of enzyme (Mr 315,000). Similar levels of acid-labile sulfide were detected. No other metals were found in stoichiometric amounts. When the enzyme was isolated aerobically, there was no cofactor requirement for NAD reduction; however, when isolated anaerobically, activity was 80 to 90% dependent on the addition of flavin mononucleotide (FMN) to the reaction mixture. Furthermore, the addition of formate to an active, anoxic solution of formate dehydrogenase rapidly inactivated it in the absence of an electron acceptor; this activity could be reconstituted approximately 85% by 50 nM FMN. Flavin adenine dinucleotide could not replace FMN in reconstituting enzyme activity. The Kms of formate dehydrogenase for formate, NAD, and FMN were 146, 200, and 0.02 microM, respectively. "Pseudomonas oxalaticus" formate dehydrogenase, which has physical characteristics nearly identical to those of the M. trichosporium enzyme, was also shown to be inactivated under anoxic conditions by formate and reactivated by FMN. The evolutionary significance of this similarity is discussed.  相似文献   

8.
The interaction between the “electron transferring flavoprotein” (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the β-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

9.
Native FAD was removed from chicken liver xanthine dehydrogenase (XDH) and replaced with a number of artificial flavins of different redox potential. Dithionite titration of the 2-thio-FAD- or 4-thio-FAD (high potential)-containing enzymes showed that the first center to be reduced was the flavin. With native enzyme, iron-sulfur centers are the first to be reduced. With the low potential flavin, 6-OH-FAD, the enzyme-bound flavin was the last center to be reduced in reductive titration with xanthine. These shifts in the reduction profile support the hypothesis that the distribution of reducing equivalents in multi-center oxidation-reduction enzymes of this type is determined by the relative potentials of the centers. The reaction of molecular oxygen with fully reduced 2-thio-FAD XDH or 4-thio-FAD XDH resulted in 5 electron eq being released in a fast phase and one in a slow phase. Reduction of these enzymes by xanthine was limited at a rate comparable to that for the release of urate from native XDH. Xanthine/O2 turnover with these enzymes (and native XDH) resulted in approximately 40-50% of the xanthine reducing equivalents appearing as superoxide. Steady state turnover experiments involving all modified flavin-containing enzymes, as well as native enzyme, showed that shifting the flavin potential either positive or negative relative to FAD caused a decrease in catalytic activity in the xanthine/NAD reductase reaction. In the case of the xanthine/O2 reductase activity, there is no simple obvious relationship between the activity and the redox potential of the reconstituted flavin.  相似文献   

10.
Electron-transferring flavoprotein (ETF) was purified from the bacterium Paracoccus denitrificans and the structural and redox relationships to the porcine and human ETFs were investigated. The three proteins have essentially identical subunit masses and the alpha-helix content of the bacterial and porcine ETFs are very similar, indicating global structural similarity. An anti-(porcine ETF) polyclonal antibody that crossreacts with the human large and small subunits also crossreacts strongly with the large subunit of Paracoccus ETF. However, crossreactivity with the small subunit is very weak. Nonetheless, an amino-terminal peptide and four internal peptides of the small bacterial subunit show extensive sequence identity with the human small subunit. Local similarities in environment are also indicated by the intrinsic tryptophan fluorescence emission spectra of porcine and Paracoccus ETFs. Although the visible spectra of porcine and Paracoccus ETFs are virtually identical, flavin fluorescence in the bacterial protein is only 15% that of the mammalian protein. Further, the circular dichroic spectrum of the flavin in the bacterial protein is significantly more intense, suggesting that the microenvironment of the isoalloxazine ring is different in the two proteins. Enzymatic or photochemical reduction of Paracoccus ETF rapidly yields an anionic semiquinone; formation of the fully reduced flavin in the bacterial ETF is very slow. The spacing of the oxidation-reduction potentials of the flavin couples in the bacterial ETF is essentially identical to that in procine ETF as judged from the disproportionation equilibrium of the bacterial ETF flavin semiquinone. Together, the enzymatic reduction and disproportionation equilibria suggest that the flavin potentials of the two ETFs must be very close. The data indicate that the structural properties of the bacterial and mammalian proteins and the thermodynamic properties of the flavin prosthetic group of the proteins are very similar.  相似文献   

11.
T C Lehman  C Thorpe 《Biochemistry》1990,29(47):10594-10602
Medium-chain acyl-CoA dehydrogenase reduced with octanoyl-CoA is reoxidized in two one-electron steps by two molecules of the physiological oxidant, electron transferring flavoprotein (ETF). The organometallic oxidant ferricenium hexafluorophosphate (Fc+PF6-) is an excellent alternative oxidant of the dehydrogenase and mimics a number of the features shown by ETF. Reoxidation of octanoyl-CoA-reduced enzyme (200 microM Fc+PF6- in 100 mM Hepes buffer, pH 7.6, 1 degree C) occurs in two one-electron steps with pseudo-first-order rate constants of 40 s-1 and about 200 s-1 for k1 and k2, respectively. The reaction is comparatively insensitive to ionic strength, and evidence of rate saturation is encountered at high ferricenium ion concentration. As observed with ETF, the free two-electron-reduced dehydrogenase is a much poorer kinetic reductant of Fc+PF6-, with rate constants of 3 s-1 and 0.3 s-1 (for k1 and k2, respectively) using 200 microM Fc+PF6-. In addition to the enoyl-CoA product formed during the dehydrogenation of octanoyl-CoA, binding a number of redox-inert acyl-CoA analogues (notably 3-thia- and 3-oxaoctanoyl-CoA) significantly accelerates electron transfer from the dehydrogenase to Fc+PF6-. Those ligands most effective at accelerating electron transfer favor deprotonation of reduced flavin species in the acyl-CoA dehydrogenase. Thus this rate enhancement may reflect the anticipated kinetic superiority of anionic flavin forms as reductants in outer-sphere electron-transfer processes. Evidence consistent with the presence of two distinct loci for redox communication with the bound flavin in the acyl-CoA dehydrogenase is presented.  相似文献   

12.
Electron transfer flavoprotein (ETF) from pig liver mitochondria has been purified to homogeneity by a three-step procedure with approx. 10-fold higher yields than previously reported. The purified ETF exhibits an absorption coefficient for the bound FAD of 13.5 mM-1.cm-1 at 436 nm and an isoelectric point of 6.75. Gel filtration, sodium dodecyl sulphate gel electrophoresis and flavin analysis indicate that pig liver ETF is a dimer, composed of non-identical subunits (Mr 38 000 and 32 000) with only one FAD/dimer. Anaerobic reduction by dithionite produces anionic flavin semiquinone as a stable intermediate and establishes the flavin to be the only redox-active chromophore in ETF.  相似文献   

13.
2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) is a flavoprotein that catalyzes the oxygenation of MHPC to form alpha-(N-acetylaminomethylene)-succinic acid. Although formally similar to the oxygenation reactions catalyzed by phenol hydroxylases, MHPCO catalyzes the oxygenation of a pyridyl derivative rather than a simple phenol. Therefore, in this study, the mechanism of the reaction was investigated by replacing the natural cofactor FAD with FAD analogues having various substituents (-Cl, -CN, -NH(2), -OCH(3)) at the C8-position of the isoalloxazine. Thermodynamic and catalytic properties of the reconstituted enzyme were investigated and found to be similar to those of the native enzyme, validating that these FAD analogues are reasonable to be used as mechanistic probes. Dissociation constants for the binding of MHPC or the substrate analogue 5-hydroxynicotinate (5HN) to the reconstituted enzymes indicate that the reconstituted enzymes bind well with ligands. Redox potential values of the reconstituted enzymes were measured and found to be more positive than the values of free FAD analogues, which correlated well with the electronic effects of the 8-substituents. Studies of the reductive half-reaction of MHPCO have shown that the rates of flavin reduction by NADH could be described as a parabolic relationship with the redox potential values of the reconstituted enzymes, which is consistent with the Marcus electron transfer theory. Studies of the oxidative half-reaction of MHPCO revealed that the rate of hydroxylation depended upon the different analogues employed. The rate constants for the hydroxylation step correlated with the calculated pK(a) values of the 8-substituted C(4a)-hydroxyflavin intermediates, which are the leaving groups in the oxygen transfer step. It was observed that the rates of hydroxylation were greater when the pK(a) values of C(4a)-hydroxyflavins were lower. Although these results are not as dramatic as those from analogous studies with parahydroxybenzoate hydroxylase (Ortiz-Maldonado et al., (1999) Biochemistry 38, 8124-8137), they are consistent with the model that the oxygenation reaction of MHPCO occurs via an electrophilic aromatic substitution mechanism analogous to the mechanisms for parahydroxybenzoate and phenol hydroxylases.  相似文献   

14.
Absolute stereochemistry of flavins in enzyme-catalyzed reactions   总被引:3,自引:0,他引:3  
The 8-demethyl-8-hydroxy-5-deaza-5-carba analogues of FMN and FAD have been synthesized. Several apoproteins of flavoenzymes were successfully reconstituted with these analogues. This and further tests established that these analogues could serve as general probes for flavin stereospecificity in enzyme-catalyzed reactions. The method used by us involved stereoselective introduction of label on one enzyme combined with transfer to and analysis on a second enzyme. Using as a reference glutathione reductase from human erythrocytes for which the absolute stereochemistry of catalysis is known from X-ray studies [Pai, E. F., & Schulz, G. E. (1983) J. Biol. Chem. 258, 1752-1758], we were able to determine the absolute stereospecificities of other flavoenzymes. We found that glutathione reductase (NADPH), general acyl-CoA dehydrogenase (acyl-CoA), mercuric reductase (NADPH), thioredoxin reductase (NADPH), p-hydroxybenzoate hydroxylase (NADPH), melilotate hydroxylase (NADH), anthranilate hydroxylase (NADPH), and glucose oxidase (glucose) all use the re face of the flavin ring when interacting with the substrates given in parentheses.  相似文献   

15.
A pair of proteins involved in electron transfer, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro. It was demonstrated by fluorescence spectroscopy that flavin adenine dinucleotide (FAD) can slowly and spontaneously be released from ETF. This release is followed by increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is dramatically activated by TMAD preparations that induce a local conformational transition in ETF. It was shown on the basis of the values of tryptophan polarization and lifetime with the use of the Levshin–Perrin equation that the sizes of protein particles were not changed after mixing of TMAD and ETF; i.e., these proteins by themselves did not form a stable complex with each other. The release of flavin from ETF did not occur in the presence of trimethylamine and formaldehyde in the protein mixture. In this case, a stable complex between the proteins is probably formed with the participation of formaldehyde. FAD is hydrolyzed to flavin mononucleotide (FMN) and AMP after a short-term incubation of ETF with ferricyanide. This fact explains the previous detection of AMP in ETF preparations by other researches. A fluorescence method for distinguishing FAD from FMN in solution with the use ethylene glycol is proposed.  相似文献   

16.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

17.
Glutaryl-coenzyme A (CoA) dehydrogenase and the electron transfer flavoprotein (ETF) of Paracoccus denitrificans were purified to homogeneity from cells grown with glutaric acid as the carbon source. Glutaryl-CoA dehydrogenase had a molecular weight of 180,000 and was made up of four identical subunits with molecular weights of about 43,000 each of which contained one flavin adenine dinucleotide molecule. The enzyme catalyzed an oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA, was maximally stable at pH 5.0, and lost activity readily at pH values above 7.0. The enzyme had a pH optimum in the range of 8.0 to 8.5, a catalytic center activity of about 960 min-1, and apparent Michaelis constants for glutaryl-CoA and pig liver ETF of about 1.2 and 2.5 microM, respectively. P. denitrificans ETF had a visible spectrum identical to that of pig liver ETF and was made up of two subunits, only one of which contained a flavin adenine dinucleotide molecule. The isoelectric point of P. denitrificans ETF was 4.45 compared with 6.8 for pig liver ETF. P. denitrificans ETF accepted electrons not only from P. denitrificans glutaryl-CoA dehydrogenase, but also from the pig liver butyryl-CoA and octanoyl-CoA dehydrogenases. The apparent Vmax was of similar magnitude with either pig liver or P. denitrificans ETF as an electron acceptor for these dehydrogenases. P. denitrificans glutaryl-CoA dehydrogenase and ETF were used to assay for the reduction of ubiquinone 1 by ETF-Q oxidoreductase in cholate extracts of P. denitrificans membranes. The ETF-Q oxidoreductase from P. denitrificans could accept electrons from either the bacterial or the pig liver ETF. In either case, the apparent Km for ETF was infinitely high. P. denitrificans ETF-Q oxidoreductase was purified from contaminating paramagnets, and the resultant preparation had electron paramagnetic resonance signals at 2.081, 1.938, and 1.879 G, similar to those of the mitochondrial enzyme.  相似文献   

18.
ETF Dehydrogenase is an iron sulfur flavoprotein responsible for the transfer of electrons between electron transfer flavoprotein (ETF) and CoQ of the electron transport chain. We have determined the resonance Raman spectrum of this enzyme observing in the process at least seven of thirteen flavin bands in the 1100cm-1-1600 cm-1 region of the Raman spectrum. The positions of three of these bands, II, IX, and X (see Figure I and Table I for band numbering system) in ETF dehydrogenase is very similar to their positions in aqueous solution of flavins in which water is hydrogen bonded to N-1, N-5, C=0(2), C=0(4), and N-H(3) of flavin. Conversely the positions of the flavin Raman bands are considerably shifted from those of flavin in nonhydrogen bonding solvent. The positions of bands II, IX, and X are nearly identical to those in the flavoprotein glutathione reductase; x-ray structural investigations on this enzyme indicate that there is extensive hydrogen bonding between FAD and protein in this molecule. A previous study in our laboratory has demonstrated that metal complexation at N-5 and C=0(4) with either Ru or Ag produces large shifts in the positions of Raman bands II, VI, IX, and X. None of these shifts are observed in ETF dehydrogenase indicating that there is no direct inner sphere coordination of Fe to flavin. In addition to the Raman bands of flavin observed in our spectrum, we also observe one band that is in the Fe-S stretching region observed for a variety of Fe-S proteins. This band is located at 331 cm-1. The frequency of the band corresponds to the 335 cm-1 band associated with the strongest Fe-S stretching mode in the 4Fe-4S protein ferrodoxin from C. pasterianum. The observed frequency is quite different from that of the 3Fe-3S proteins such as ferrodoxin(II) from D. gigas. Finally, ETF dehydrogenase shows no loss of activity or visual evidence of photodegradation in the laser beam as most other FeS proteins do.  相似文献   

19.
Succinate dehydrogenase has been solubilized from R. rubrum chromatophores with the use of chaotropic agents, and purified approximately 80-fold. The preparation (SDr) contains 8 g-atoms of iron per mole of flavin, and has a turnover number of approximately 4000 (moles succinate oxidized by ferricyanide or phenazine methosulfate/mole of flavin/min at 38 °C). Its absorption and EPR spectra are similar to those of bovine heart succinate dehydrogenase. SDr can cross-interact with the bovine heart electron-transport system (alkali-inactivated ETP) and reconstitute succinoxidase activity with an efficiency comparable to the reconstitution activity of purified bovine heart succinate dehydrogenase. Preliminary results suggest that SDr has a molecular weight of approximately 85,000, and that it is composed of a flavoprotein subunit with a molecular weight of approximately 60,000, plus a second subunit (possibly an iron-sulfur protein) with a molecular weight of approximately 25,000.  相似文献   

20.
The electron-transferring proteins, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro by fluorescence spectroscopy. Flavin adenine dinucleotide (FAD) was found to be capable of a slow and spontaneous release from ETF, which is accompanied by an increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is sharply activated by TMAD preparations that induce a local conformational transition in ETF. The values of tryptophan fluorescence polarization and lifetime and the use of the Levshin-Perrin equation helped show that the size of protein particles remain unchanged upon the TMAD and ETF mixing; i.e., these proteins themselves do not form a stable complex with each other. The protein mixture did not release flavin from ETF in the presence of trimethylamine and formaldehyde. In this case, a stable complex between the proteins appeared to be formed under the action of formaldehyde. Upon a short-term incubation of ETF with ferricyanide, FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP. This fact explains the previous detection of AMP in ETF preparations by some researches. A fluorescence method was proposed for distinguishing FAD from FMN in solution using ethylene glycol. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号