首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The beet cyst nematodeHeterodera schachtii is able to establish a feeding structure (syncytium) in the vascular tissue of roots and shoots ofArabidopsis thaliana. Histological and ultrastructural studies were performed to assess plant responses during the development of juvenile females under monoxenic conditions. After destructively invading a root the nematode selects and pierces a single procambial cell with its stylet and transforms it into an initial syncytial cell (ISC) by secretory activity. The first most obvious changes in the ISC occur in the vacuolar system and at the wall. Differentiation of a central vacuole is impeded resulting in the formation of numerous small vacuoles. Multivesicular and paramural bodies are formed. An electron translucent material is deposited on the cell wall. Partial dissolution of the cell wall leads to the formation of a syncytium. At the juveniles' last pre-adult developmental stage the syncytium attains its maximum longitudinal and radial extension, occupying a major part of the central cylinder. Its features are indicative of a very high level of metabolic activity. The hypertrophied syncytium is ensheathed by a peridermal cover in which secondary xylem and phloem elements are interspersed. When females die the syncytia degenerate. The ultrastructural and histological features of syncytia described from roots are also found in syncytia induced in aerial parts of the plant.  相似文献   

2.
Summary The development of microspore mother cells (MMC) and tapetum in male-fertile and male-sterile anthers of Beta vulgaris L. was compared at the electron microscope level. These studies were complemented by morphometric analyses of mitochondria in both tissues through successive stages of microsporogenesis. The earliest irregularities in the ultrastructure of male-sterile anthers were noted within the tapetum at the tetrad stage. These disturbances were initially expressed by a slight reduction in mitochondrial size and the appearance of concentric configurations of endoplasmic reticulum. As development proceeded, a further decrease in mitochondrial size become more conspicuous and was accompanied by a reduction in ribosome population and a failure of the tapetum to produce Ubisch bodies. This failure to produce Ubisch bodies is reflected in the underdevelopment of sterile microspore exine.  相似文献   

3.
Summary The development of sporogenous and tapetal cells in the anthers of male-fertile and cytoplasmic male-sterile sugar beet (Beta vulgaris L.) plants was studied using light and transmission electron microscopy. In general, male-sterile anthers showed a much greater variability in developmental pattern than male-fertile anthers. The earliest deviation from normal anther development was observed to occur in sterile anthers at meiotic early prophase: there was a degeneration or irregular proliferation of the tapetal cells. Other early aberrant events were the occurrence of numerous small vesicles in the microspore mother cells (MMC) and a disorganized chromatin condensation. Deviations that occurred in sterile anthers at later developmental stages included: (1) less distinct inner structures in the mitochondria of both MMC and tapetal cells from middle prophase onwards. (2) dilated ER and nuclear membranes at MMC prophase, in some cases associated with the formation of protein bodies. (3) breakdown of cell walls in MMCs and tapetal cells at late meiotic prophase. (4) no massive increase in tapetal ER at the tetrad stage. (5) a general dissolution of membranes, first in the MMC, then in the tapetum. (6) abortion of microspores and the occurrence of a plasmodial tapetum in anthers reaching the microspore stage. (7) no distinct degeneration of tapetal cells after microspore formation. Thus, it seems that the factors that lead to abortive microsporogenesis are structurally expressed at widely different times during anther development. Aberrant patterns are not restricted to the tetrad stage but occur at early prophase.  相似文献   

4.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

5.
Leaves of Fe deficient sugar beets precultured in complete nutrient solution with Fe(III)EDTA remained green during the first 6 days of –Fe treatment when grown in a small nutrient solution volume (0.5 L/plant). After 3 days of –Fe treatment, roots placed in agar showed enhanced H+ release and ferric reduction at the tips of young laterals where short root hairs and transfer cells had developed. However, the H+ release was too weak to cause a pH decrease of the bulk nutrient solution. Nevertheless, the Fe stress response reactions probably lead to mobilization of Fe from the apoplasmic pool so that chlorosis development was prevented. Slight chlorosis symptoms appeared only after 4 more days of Fe deficiency and the pH of the bulk nutrient solution decreased to pH 4.5 simultaneously with renewed transfer cell formation and subsequent rapid regreening. In the 10 times higher volume of 5 L-Fe solution/plant, laterals with root hairs and transfer cells also showed localized acidification of the agar system. However, the protons released were so diluted that no pH decrease of the bulk solution was measurable. Instead, the leaves showed continuously increasing chlorosis with degenerated chloroplast ultrastructure. It is concluded that root hairs and transfer cells are not only formed under severe chlorosis but, instead, they seem to be an integral part of the adaptive response to latent Fe deficiency.  相似文献   

6.
Summary Mitochondrial (mt) DNA, isolated from different sugar beet populations, was analyzed using BamHI and EcoRI restriction enzymes. It was shown that plants possessing the new mtDNA types are revealed among O-type fertilizers quite frequently. Among cytoplasmic male sterile (cms) plants, which evolved during cultivation of O-type fertilizers, plants with altered mt genome were found.  相似文献   

7.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

8.
Summary The present study diseusses the results of cytological studies of two kinds of sugar beet callus, i.e., embryogenic and non-embryogenic tissues. The calluses were produced through culture of secondary leaves on Murashige and Skoog medium containing two hormone combinations. One week after transfer of calluses onto fresh medium, their cells were viewed using electron microscopy and an image analyzer. Observations showed that cells of the two callus types had considerable differences in cell structure and various organelles. Of note were the high amount of polyploidization, rough endoplasmic reticulum, polysome, poly-nucleolus, and incomplete cell wall together with abnormal partitioning in non-embryogenic cells, as compared to embryogenic cells. In contrast, vacuolation of cytoplasm, perfect cell wall and partitioning structure, and the high proportion of nucleus/cytoplasm area were recognized in embryogenic cells.  相似文献   

9.
The sink mobilizing abillity is partially determined by sugar uptake rates of storage cells. Two synthetic growth regulators (Pix and BAS 106W) were tested for their effect on sucrose uptake in root tissue discs or glucose uptake in cell cultures of sugar beet. In tissue discs, uptake at the plasmalemma was determined by incubating the discs for 1 h in the presence of 5 mM sucrose and at the tonoplast for 4 h in the presence of 40 mM sucrose. Cell cultures were incubated for 1 h in the presence of 1 mM glucose. Pix (10 mg l–1) caused a 20% stimulation of active sucrose uptake at the plasmalemma. Active sucrose uptake at the tonoplast was increased 67% by 100 mg l–1 Pix. No effect of BAS 106W was observed on sucrose uptake in tissue discs. In cell cultures, a 65% enhancement of active glucose uptake was observed with both Pix and BAs 106W. When the bioregulators were applied to the root medium of seedlings, Pix but not BAS 106W resulted in increased root/shoot ratio, translocation of 14C-assimilates, and allocation of more biomass to the root sink. The data suggested that sugar transport and translocation may be used as biochemical criteria for rapid screening of effective yield enhancing bioregulators.  相似文献   

10.
An extended map of the sugar beet genome containing RFLP and RAPD loci   总被引:6,自引:0,他引:6  
An updated map of sugar beet (Beta vulgaris L. ssp. vulgaris var altissima Doell) is presented. In this genetic map we have combined 248 RFLP and 50 RAPD loci. Including the loci for rhizomania resistance Rr1, hypocotyl colour R and the locus controlling the monogerm character M, 301 loci have now been mapped to the nine linkage groups covering 815 cM. In addition, the karyotype of some of the Beta vulgaris chromosomes has been correlated with existing RFLP and RAPD linkage maps.  相似文献   

11.
Summary For our program on the transfer of cytoplasmic male sterility (CMS) by cybridization inBeta vulgaris L. (sugar beet), we have developed a procedure for the isolation and culture of mesophyll protoplasts of sugar beet followed by shoot regeneration. A prerequisite proved to be the presence in the media of n-propylgallate (nPG), a lipoxygenase inhibitor. Sustained divisions were found in all accessions that were tested. Plating efficiencies and regeneration ability varied greatly from one experiment to the other and appeared to be accession-dependent. Shoots could be easily transferred to soil. A majority of the regenerants (72%) retained the diploid chromosome number. Somaclonar variation in phenotype was low (4.9%). Mitochondrial DNA probes, capable of discriminating different cytoplasms ofBeta spp. showed no rearrangements due to the protoplast and in vitro culture phase, indicating that these probes can be used to identify cybrids after asymmetric fusions. The data presented here open up possibilities for genetic engineering using protoplasts in one of the world's most important arable crops.  相似文献   

12.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

13.
Summary Two cytoplasms, N and S, are used in the breeding of sugar beet, Beta vulgaris var. altissima. These cytoplasms can be distinguished by their mitochondrial DNA. In an attempt to detect new cytoplasms, we compared the restriction profiles of chloroplast and mitochondrial DNA from five different cultivars of Beta vulgaris. All restriction patterns of chloroplast DNA were identical. With the exception of sugar beet with S-cytoplasm, all cultivars studied showed the same restriction profile of mitochondrial DNA, indicating that these cultivars all contain the N-cytoplasm. These results are discussed with regard to the large morphological differences of the cultivars and the cytoplasmic variability found in natural populations of the wild beet, Beta maritima.  相似文献   

14.
15.
Arabinogalactan proteins (AGPs) represent a class of proteoglycans implicated in the development and differentiation of cells and tissues both in planta and in vitro. Here we report that AGP-rich extracts isolated from media of embryogenic and non-embryogenic suspension cultures of sugar beet (Beta vulgaris L.) are able to enhance the organogenesis of guard protoplast-derived callus and to increase the number of shoots formed, in comparison to control cultures. Immunocytochemical detection of carbohydrate antigens in the extracts revealed the presence of epitopes that typify both AGP and pectin, the latter being frequently bound to AGPs or, in some cases, even contributing to the polysaccharide structure of proteoglycan molecules. The most abundant epitopes proved to be those recognized by the JIM13, LM2, and MAC207 antibodies, whereas some others could be found only in relatively small or trace amounts--these included epitopes recognized by JIM16, JIM5, and LM6. Surprisingly, the JIM4- and JIM8-binding epitopes that are expressed in the course of in vitro morphogenetic processes of many species could not be detected at all in sugar beet AGPs. This is the first report of the improvement of sugar beet protoplast-derived callus organogenesis by exogenous AGP-rich extracts, an achievement that will have great impact on the biotechnological applications of protoplast technology in this species.  相似文献   

16.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

17.
Summary Five isozyme systems were genetically investigated. The different separation techniques, the developmental expression and the use as marker system in sugar beet genetics and breeding is discussed. Isocitrate dehydrogenase was controlled by two genes. The gene products form inter- as well as intralocus dimers, even with the gene products of the Icd gene in B. procumbens and B. patellaris. Adenylate kinase was controlled by one gene. Three different allelic forms were detected, which were active as monomeric proteins. Glucose phosphate isomerase showed two zones of activity. One zone was polymorphic. Three allelic variants, active as dimers, were found. Phosphoglucomutase also showed two major zones of activity. One zone was polymorphic and coded for monomeric enzymes. Two allelic forms were found in the accessions studied. The cathodal peroxidase system was controlled by two independent genes, of which only one was polymorphic. The gene products are active as monomers. Linkage was found between red hypocotyl color (R) and Icd 2. Pgm 1, Gpi 2, Ak 1 and the Icd 2-R linkage group segregated independently.  相似文献   

18.
Summary We have established a first linkage map for beets based on RFLP, isozyme and morphological markers. The population studied consisted of 96 F2 individuals derived from an intraspecific cross. As was expected for outbreeding species, a relatively high degree of polymorphism was found within sugar beet; 47% of the DNA markers were polymorphic for the chosen population. The map consists of 115 independent chromosomal loci designated by 108 genomic DNA probes, 6 isozyme and one morphological marker. The loci cover 789 cM with an average spacing of 6.9 cM. They are dispersed over nine linkage groups corresponding to the haploid chromosome number of Beta species. Eighteen markers (15.4%) showed distorted segregation which, in most instances, can be explained by gametic selection of linked lethal loci. The application of the linkage map in sugar beet breeding is discussed.  相似文献   

19.
Factors influencing the transient expression of introduced foreign DNA in electroporated protoplasts and intact cells of sugar beet were determined by assaying for the activity of chloramphenicol acetyltransferase (CAT), using a rectangular pulse generating system. Extractable CAT activity depended upon 1) applied plasmid DNA concentration, 2) protoplast density, 3) the interaction between pulse field strength, duration, number, time interval between pulses and the resultant effect on culture viability, and 4) the physiological state of the protoplasts. Mesophyll protoplasts were more susceptible to damage by electroporation, and were more specific in their requirement for electroporations which allowed CAT expression, than were protoplasts derived from suspension culture cells. CAT activity was also demonstrated, at low levels, after electroporation of intact suspension culture cells, and could be increased by pectinase treatment of the cells before electroporation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号