首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnitude and duration of G protein-coupled receptor (GPCR) signals are regulated through desensitization mechanisms. In leukocytes, ligand binding to chemokine receptors leads to Ca2+ mobilization and ERK activation through pertussis toxin-sensitive G proteins, as well as to phosphorylation of the GPCR. After interaction with the endocytic machinery (clathrin, adaptin), the adaptor β-arrestin recognizes the phosphorylated GPCR tail and quenches signaling to receptors. The molecular mechanisms that lead to receptor endocytosis are not universal amongst the GPCR, however, and the precise spatial and temporal events in the internalization of the CCR2 chemokine receptor remain unknown. Here we show that after ligand binding, CCR2 internalizes rapidly and reaches early endosomes, and later, lysosomes. Knockdown of clathrin by RNA interference impairs CCR2 internalization, as does treatment with the dynamin inhibitor, dynasore. Our results show that CCR2 internalization uses a combination of clathrin-dependent and -independent pathways, as observed for other chemokine receptors. Moreover, the use of dynasore allowed us to confirm the existence of a dynamin-sensitive element that regulates ERK1/2 activation. Our results indicate additional complexity in the link between receptor internalization and cell signaling.  相似文献   

2.
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor’s structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.  相似文献   

3.
G‐protein‐coupled receptors (GPCR) are a family of membrane‐embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2‐adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G‐protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw‐in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Proteins 2014; 82:579–586. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
G protein‐coupled receptors (GPCRs) physically connect extracellular information with intracellular signal propagation. Membrane trafficking plays a supportive role by “bookending” signaling events: movement through the secretory pathway delivers GPCRs to the cell surface where receptors can sample the extracellular environment, while endocytosis and endolysosomal membrane trafficking provide a versatile system to titrate cellular signaling potential and maintain homeostatic control. Recent evidence suggests that, in addition to these important effects, GPCR trafficking actively shapes the cellular signaling response by altering the location and timing of specific receptor‐mediated signaling reactions. Here, we review key experimental evidence underlying this expanding view, focused on GPCR signaling mediated through activation of heterotrimeric G proteins located in the cytoplasm. We then discuss lingering and emerging questions regarding the interface between GPCR signaling and trafficking.   相似文献   

5.
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with β-arrestin2-GFP translocation. Moreover, recruitment of β-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold β-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.  相似文献   

6.
It is generally accepted that G-protein coupled receptors (GPCR), like chemokine receptors, form dimers or higher order oligomers. Such homo- and heterophilic interactions have been identified not only among and between chemokine receptors of CC- or CXC-subfamilies, but also between chemokine receptors and other classes of GPCR, like the opioid receptors. Oligomerization affects different aspects of receptor physiology, like ligand affinity, signal transduction and the mode of internalization, in turn influencing physiologic processes such as cell activation and migration. As particular chemokine receptor pairs exert specific modulating effects on their individual functions, they might play particular roles in various disease types, such as cancer. Hence, chemokine receptor heteromers might represent attractive therapeutic targets. This review highlights the state-of-the-art knowledge on the technical and functional aspects of chemokine receptor multimerization in chemokine signaling and biology.  相似文献   

7.
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.  相似文献   

8.
As the most diverse type of cell surface receptor, the importance heptahelical G protein-coupled receptors (GPCRs) to clinical medicine cannot be overestimated. Visual, olfactory and gustatory sensation, intermediary metabolism, cell growth and differentiation are all influenced by GPCR signals. The basic receptor-G protein-effector mechanism of GPCR signaling is tuned by a complex interplay of positive and negative regulatory events that amplify the effect of a hormone binding the receptor or that dampen cellular responsiveness. The association of heptahelical receptors with a variety of intracellular partners other than G proteins has led to the discovery of potential mechanisms of GPCR signaling that extend beyond the classical paradigms. While the physiologic relevance of many of these novel mechanisms of GPCR signaling remains to be established, their existence suggests that the mechanisms of GPCR signaling are even more diverse than previously imagined.  相似文献   

9.
The ability of G protein-coupled receptors (GPCRs) to activate selective signaling pathways according to the conformation stabilized by bound ligands (signaling bias) is a challenging concept in the GPCR field. Signaling bias has been documented for several GPCRs, including chemokine receptors. However, most of these studies examined the global signaling bias between G protein- and arrestin-dependent pathways, leaving unaddressed the potential bias between particular G protein subtypes. Here, we investigated the coupling selectivity of chemokine receptors CCR2, CCR5, and CCR7 in response to various ligands with G protein subtypes by using bioluminescence resonance energy transfer biosensors monitoring directly the activation of G proteins. We also compared data obtained with the G protein biosensors with those obtained with other functional readouts, such as β-arrestin-2 recruitment, cAMP accumulation, and calcium mobilization assays. We showed that the binding of chemokines to CCR2, CCR5, and CCR7 activated the three Gαi subtypes (Gαi1, Gαi2, and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies that generally correlate to their binding affinities. In addition, we showed that the binding of chemokines to CCR5 and CCR2 also activated Gα12, but not Gα13. For each receptor, we showed that the relative potency of various agonist chemokines was not identical in all assays, supporting the notion that signaling bias exists at chemokine receptors.  相似文献   

10.
Despite the broad biological importance of G protein-coupled receptors (GPCRs), ligand recognition by GPCRs remains poorly understood. To explore the roles of GPCR extracellular elements in ligand binding and to provide a tractable system for structural analyses of GPCR/ligand interactions, we have developed a soluble protein that mimics ligand recognition by a GPCR. This receptor analog, dubbed CROSS5, consists of the N-terminal and third extracellular loop regions of CC chemokine receptor 3 (CCR3) displayed on the surface of a small soluble protein, the B1 domain of Streptococcal protein G. CROSS5 binds to the CCR3 ligand eotaxin with a dissociation equilibrium constant of 2.9 +/- 0.8 microM and competes with CCR3 for eotaxin binding. Control proteins indicate that juxtaposition of both CCR3 elements is required for optimal binding to eotaxin. Moreover, the affinities of CROSS5 for a series of eotaxin mutants are highly correlated with the apparent affinities of CCR3 for the same mutants, demonstrating that CROSS5 uses many of the same interactions as does the native receptor. The strategy used to develop CROSS5 could be applied to many other GPCRs, with a variety of potential applications.  相似文献   

11.
Chemokines are a class of inflammatory mediators which main function is to direct leukocyte migration through the binding to G protein-coupled receptors (GPCRs). In addition to these functional, signal-transducing chemokine receptors other types of receptors belonging to the chemokine GPCR family were identified. They are called atypical or decoy chemokine receptors because they bind and degrade chemokines but do not transduce signals or activate cell migration. Here there is the summary of two recent papers that identified other nonchemotactic chemokine receptors: the Duffy antigen receptor for chemokines (DARC) that mediates trancytosis of chemokines from tissue to vascular lumen promoting chemokine-mediated leukocyte transmigration and chemokine (CC motif) receptor-like 2 (CCRL2) that neither internalizes its ligands nor transduces signals but presents bound ligands to functional signaling receptors improving their activity. Collectively these nonchemotactic chemokine receptors do not directly induce cell migration, but appear nonetheless to play a nonredundant role in leukocyte recruitment by shaping the chemoattractant gradient, either by removing, transporting or concentrating their cognate ligands.Key words: Chemokine, chemokine receptor, leukocyte recruitment, chemotaxis, transcytosis  相似文献   

12.
G蛋白偶联受体激酶(GRK)是G蛋白偶联受体(GPCR)信号通路的负性调节因子。近来的研究发现,GRK除了磷酸化G蛋白偶联受体使其脱敏外,还能与其他非受体底物结合,功能呈现多样性。GRK5是GRK家族成员之一,该研究探索了GRK5在细胞周期和有丝分裂中的作用,结果显示:在细胞内干扰GRK5的表达导致分裂中期的细胞数目增多和细胞凋亡。进一步的研究发现,干扰GRK5的表达导致有丝分裂中期的染色体不能正常排列到赤道板,而对分裂后期染色质分离以及胞质分裂没有影响。在细胞内干扰GRK蛋白家族的另一个成员GRK2对有丝分裂则没有明显影响。该研究提示GRK5是细胞有丝分裂的重要调控蛋白。  相似文献   

13.
The CC chemokine receptor 6 (CCR6) is selectively expressed on memory T cells, B cells, and dendritic cells and appears to be involved in the initiation of a memory immune response. The only chemokine ligand for CCR6 is CCL20/MIP-3. In the present study, we attempted to define the extracellular domains (ECDs) of CCR6 responsible for CCL20/MIP-3 binding using a domain-swapping approach in which the ECDs of CCR6 were substituted with the corresponding CCR5 domains to generate various CCR6/CCR5 chimeras. These chimeras were tested for receptor expression, ligand binding, and functional activity as evaluated by calcium flux and chemotaxis. All chimeras showed respectable surface expression; however only one, substituted with extracellular loop 1 from CCR5, showed reduced functional activity. The general failure of functionality of the CCR6/CCR5 chimeras may imply that characteristics of each ECD are critical for coordination among all the ECDs of CCR6. Additionally, of interest, a chimera containing all of the ECDs from CCR5 in the context of CCR6 neither responded to CCR5 ligands nor served as a coreceptor for macrophage-tropic HIV-1. These results suggest that not only ECDs but also transmembrane and intracellular domains of CCR5 are involved in both ligand binding and coreceptor activity.  相似文献   

14.
Chemokines are a family of proinflammatory cytokines that attract and activate specific types of leukocytes. Chemokines mediate their effects via interaction with seven transmembrane G protein-coupled receptors (GPCR). Using CCR5-transfected HEK-293 cells, we show that both the CCR5 ligand, RANTES, as well as its derivative, aminooxypentane (AOP)- RANTES, trigger immediate responses such as Ca2+ influx, receptor dimerization, tyrosine phosphorylation, and Galphai as well as JAK/STAT association to the receptor. In contrast to RANTES, (AOP)-RANTES is unable to trigger late responses, as measured by the association of focal adhesion kinase (FAK) to the chemokine receptor complex, impaired cell polarization required for migration, or chemotaxis. The results are discussed in the context of the dissociation of the late signals, provoked by the chemokines required for cell migration, from early signals.  相似文献   

15.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

16.
Human colon epithelial cells express the G protein-coupled receptor CCR6, the sole receptor for the chemokine CCL20 (also termed MIP-3). CCL20 produced by intestinal epithelial cells is upregulated in response to proinflammatory stimuli and microbial infection, and it chemoattracts leukocytes, including CCR6-expressing immature myeloid dendritic cells, into sites of inflammation. The aim of this study was to determine whether CCR6 expressed by intestinal epithelial cells acts as a functional receptor for CCL20 and whether stimulation with CCL20 alters intestinal epithelial cell functions. The human colon epithelial cell lines T84, Caco-2, HT-29, and HCA-7 were used to model colonic epithelium. Polarized intestinal epithelial cells constitutively expressed CCR6, predominantly on the apical side. Consistent with this, apical stimulation of polarized intestinal epithelial cells resulted in tyrosine phosphorylation of the p130 Crk-associated substrate (Cas), an adaptor/scaffolding protein that localizes in focal adhesions and has a role in regulating cytoskeletal elements important for cell attachment and migration. In addition, CCL20 stimulation inhibited agonist-stimulated production of the second messenger cAMP and cAMP-mediated chloride secretory responses by intestinal epithelial cells. Inhibition was abrogated by pertussis toxin, consistent with signaling through Gi proteins that negatively regulate adenylyl cyclases and cAMP production. These data indicate that signaling events, occurring via the activation of the apically expressed chemokine receptor CCR6 on polarized intestinal epithelial cells, alter specialized intestinal epithelial cell functions, including electrogenic ion secretion and possibly epithelial cell adhesion and migration. CCL20; macrophage inflammatory protein-3; forskolin; G protein-coupled receptors; tyrosine phosphorylation  相似文献   

17.
Tumour necrosis factor- (TNF) is a cytokine that induces apoptosis in various cell systems by binding to a TNF receptor (TNFR). To study TNF-induced apoptosis, we isolated and characterized a novel TNF resistant variant, U937/TNF clone II-5, from human monocytic leukaemia U937 cells. The II-5 cells resist apoptosis by TNF and anti-Fas antibody but not by anticancer drugs, such as VP-16 and Ara-C. Somatic cell hybridization between U937 and II-5 showed that the apoptosis resistance to TNF in II-5 was genetically dominant. This dominant mutation in II-5 cells blocks TNF-induced disruption of mitochondrial membrane potential and caspase-3 activation. Expression of TNFR, Fas and Bcl-2 family proteins were not changed in II-5 cells. These results suggest that the apoptosis-resistant II-5 cells could have a functional defect in apoptosis signalling from TNFR to mitochondria and caspase activation. The II-5 cells could be useful in studying the signa lling linkage between TNFR and mitochondria.  相似文献   

18.
For head and neck squamous cell carcinoma (HNSCC), the local invasion and distant metastasis represent the predominant causes of mortality. Targeted inhibition of chemokines and their receptors is an ongoing antitumor strategy established on the crucial roles of chemokines in cancer invasion and metastasis. Herein, we showed that C-C motif chemokine ligand 2 (CCL2)- C-C motif chemokine receptor 4 (CCR4) signaling, but not the CCL2- C-C motif chemokine receptor 2 (CCR2) axis, induces the formation of the vav guanine nucleotide exchange factor 2 (Vav2)- Rac family small GTPase 1 (Rac1) complex to activate the phosphorylation of myosin light chain (MLC), which is involved in the regulation of cell motility and cancer metastasis. We identified that targeting CCR4 could effectively interrupt the activation of HNSCC invasion and metastasis induced by CCL2 without the promoting cancer relapse observed during the subsequent withdrawal period. All current findings suggested that CCL2-CCR4-Vav2-Rac1-p-MLC signaling plays an essential role in cell migration and cancer metastasis of HNSCC, and CCR4 may serve as a new potential molecular target for HNSCC therapy.Subject terms: Head and neck cancer, Cell migration, Cancer therapy  相似文献   

19.
G protein-coupled receptors are the largest family of cell surface receptors regulating multiple cellular processes. β-adrenergic receptor (βAR) is a prototypical member of GPCR family and has been one of the most well studied receptors in determining regulation of receptor function. Agonist activation of βAR leads to conformational change resulting in coupling to G protein generating cAMP as secondary messenger. The activated βAR is phosphorylated resulting in binding of β-arrestin that physically interdicts further G protein coupling leading to receptor desensitization. The phosphorylated βAR is internalized and undergoes resensitization by dephosphorylation mediated by protein phosphatase 2A in the early endosomes. Although desensitization and resensitization are two sides of the same coin maintaining the homeostatic functioning of the receptor, significant interest has revolved around understanding mechanisms of receptor desensitization while little is known about resensitization. In our current review we provide an overview on regulation of βAR function with a special emphasis on receptor resensitization and its functional relevance in the context of fine tuning receptor signaling.  相似文献   

20.
DNA-binding specificity and embryological function of Xom (Xvent-2)   总被引:30,自引:0,他引:30  
Directed cell movement is integral to both embryogenesis and hematopoiesis. In the adult, the chemokine family of secreted proteins signals migration of hematopoietic cells through G-coupled chemokine receptors. We detected embryonic expression of chemokine receptor messages by RT-PCR with degenerate primers at embryonic day 7.5 (E7.5) or by RNase protection analyses of E8.5 and E12.5 tissues. In all samples, the message encoding CXCR4 was the predominate chemokine receptor detected, particularly at earlier times (E7.5 and E8.5). Other chemokine receptor messages (CCR1, CCR4, CCR5, CCR2, and CXCR2) were found in E12.5 tissues concordant temporally and spatially with definitive (adult-like) hematopoiesis. Expression of CXCR4 was compared with that of its only known ligand, stromal cell-derived factor-1 (SDF-1), by in situ hybridization. During organogenesis, these genes have dynamic and complementary expression patterns particularly in the developing neuronal, cardiac, vascular, hematopoietic, and craniofacial systems. Defects in the first four of these systems have been reported in CXCR4- and SDF-1-deficient mice. Our studies suggest new potential mechanisms for some of these defects as well as additional roles beyond the scope of the reported abnormalities. Earlier in development, expression of these genes correlates with migration during gastrulation. Migrating cells (mesoderm and definitive endoderm) contain CXCR4 message while embryonic ectoderm cells express SDF-1. Functional SDF-1 signaling in midgastrula cells as well as E12.5 hematopoietic progenitors was demonstrated by migration assays. Migration occurred with an optimum dose similar to that found for adult hematopoietic cells and was dependent on the presence of SDF-1 in a gradient. This work suggests roles for chemokine signaling in multiple embryogenic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号