首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
Family X DNA polymerases (PolXs) are involved in DNA repair. Their binding to gapped DNAs relies on two conserved helix-hairpin-helix motifs, one located at the 8-kDa domain and the other at the fingers subdomain. Bacterial/archaeal PolXs have a specifically conserved third helix-hairpin-helix motif (GFGxK) at the fingers subdomain whose putative role in DNA binding had not been established. Here, mutagenesis at the corresponding residues of Bacillus subtilis PolX (PolXBs), Gly130, Gly132 and Lys134 produced enzymes with altered DNA binding properties affecting the three enzymatic activities of the protein: polymerization, located at the PolX core, 3′-5′ exonucleolysis and apurinic/apyrimidinic (AP)-endonucleolysis, placed at the so-called polymerase and histidinol phosphatase domain. Furthermore, we have changed Lys192 of PolXBs, a residue moderately conserved in the palm subdomain of bacterial PolXs and immediately preceding two catalytic aspartates of the polymerization reaction. The results point to a function of residue Lys192 in guaranteeing the right orientation of the DNA substrates at the polymerization and histidinol phosphatase active sites. The results presented here and the recently solved structures of other bacterial PolX ternary complexes lead us to propose a structural model to account for the appropriate coordination of the different catalytic activities of bacterial PolXs.  相似文献   

2.
Full genome sequencing of bacterial genomes has revealed the presence of numerous genes encoding family X DNA polymerases. These enzymes play a variety of biological roles and, accordingly, display often striking functional differences. Here we report that the PolX from the heat-stable organism Thermus thermophilus (TthPolX) inserts the four dNTPs with strong asymmetry. We demonstrate that this behaviour is related to the presence of a single divergent residue in the active site of TthPolX. Mutation of this residue (Ser266) to asparagine, the residue present in most PolXs, had a strong effect on TthPolX polymerase activity, increasing and equilibrating the insertion efficiencies of the 4 dNTPs. Moreover, we show that this behaviour correlates with the ability of TthPolX to insert 8-oxo-dGMP. Although the wild-type enzyme inefficiently incorporates 8-oxo-dGMP, the substitution of Ser266 to asparagine resulted in a dramatic increase in 8-oxo-dGMP incorporation opposite dA. These results suggest that the presence of a serine at position 266 in TthPolX allows the enzyme to minimize the formation of dA:8-oxo-dGMP at the expense of decreasing the insertion rate of pyrimidines. We discuss the structural basis for these effects and the implications of this behaviour for the GO system (BER of 8-oxo-dG lesions).  相似文献   

3.
DNA with single-nucleotide (1-nt) gaps can arise during various DNA processing events. These lesions are repaired by X-family DNA polymerases (PolXs) with high gap-filling activity. Some PolXs can bind productively to dNTPs in the absence of DNA and fill these 1-nt gaps. Although PolXs have a crucial role in efficient gap filling, currently, little is known of the kinetic and structural details of their productive dNTP binding. Here, we show that Thermus thermophilus HB8 PolX (ttPolX) had strong binding affinity for Mg(2+)-dNTPs in the absence of DNA and that it follows a Theorell-Chance (hit-and-run) mechanism with nucleotide binding first. Comparison of the intermediate crystal structures of ttPolX in a binary complex with dGTP and in a ternary complex with 1-nt gapped DNA and Mg(2+)-ddGTP revealed that the conformation of the incoming nucleotide depended on whether or not DNA was present. Furthermore, the Lys263 residue located between two guanosine conformations was essential to the strong binding affinity of the enzyme. The ability to bind to either syn-dNTP or anti-dNTP and the involvement of a Theorell-Chance mechanism are key aspects of the strong nucleotide-binding and efficient gap-filling activities of ttPolX.  相似文献   

4.
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.  相似文献   

5.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

6.
7.
The thermophilic bacterium Thermus thermophilus HB8 is able to utilize lactose from whey-based media for the biosynthesis of polyhydroxyalkanoates (PHAs) under nitrogen limitation. T. thermophilus can utilize both, glucose and galactose, the products of lactose hydrolysis. When T. thermophilus HB8 was grown in culture media containing 24% (v/v) whey, PHA was accumulated up to 35% (w/w) of its biomass after 24 h of cultivation. The effect of initial phosphate concentration on the PHA production was also investigated. Using an initial phosphate concentration of 50 mM the PHA accumulation was enhanced. Analysis of the produced PHA from T. thermophilous HB8 grown in whey-based media revealed a novel heteropolymer consisting of the short chain length 3-hydroxyvalerate (3HV; 38 mol%) and the medium chain length, 3-hydroxyheptanoate (3HHp; 9.89 mol%), 3-hydroxynanoate (3HN; 16.59 mol%) and 3-hydroxyundecanoate (3HU; 35.42 mol%). Despite the low molecular weight of the produced PHA by T. thermophilus, whey could be an excellent substrate for the production of heteropolymers with unique properties.  相似文献   

8.
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.  相似文献   

9.
Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.  相似文献   

10.
In this work we describe the conditional toxic effect of the expression of enzymes that cleave 5-bromo-4-chloro-3-indolyl (BCI) substrates and its use as a new counterselection principle useful for the generation of clean and unmarked mutations in the genomes of bacteria. The application of this principle was demonstrated in the thermophile Thermus thermophilus HB27 and in a mesophile for which currently no counterselection markers are available, Micrococcus luteus ATCC 27141. For T. thermophilus, the indigogenic substrate BCI-β-glucoside was used in combination with the T. thermophilus β-glucosidase gene (bgl). For M. luteus, a combination of BCI-β-galactoside and the E. coli lacZ gene was implemented. We observed a strong growth-inhibiting effect when the strains were grown on agar plates containing the appropriate BCI substrates, the inhibition being proportional to the substrate concentration and the level of bgl/lacZ expression. The growth inhibition apparently depends on intracellular BCI substrate cleavage and accumulation of toxic indoxyl precipitates. The bgl and lacZ genes were used as counterselection markers for the rapid generation of scar-less chromosomal deletions in T. thermophilus HB27 (both in a Δbgl and in a wild type background) and in M. luteus ATCC 27141.  相似文献   

11.
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels.  相似文献   

12.
RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.  相似文献   

13.
8-oxo-7,8-dihydro-2′-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn2+-dependent 3′-phosphatase and 3′-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3′-5′ exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3′ termini.  相似文献   

14.
15.
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Δkat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.  相似文献   

16.
Seven years into the completion of the genome sequencing projects of the thermophilic bacterium Thermus thermophilus strains HB8 and HB27, many questions remain on its bioenergetic mechanisms. A key fact that is occasionally overlooked is that oxygen has a very limited solubility in water at high temperatures. The HB8 strain is a facultative anaerobe whereas its relative HB27 is strictly aerobic. This has been attributed to the absence of nitrate respiration genes from the HB27 genome that are carried on a mobilizable but highly-unstable plasmid. In T. thermophilus, the nitrate respiration complements the primary aerobic respiration. It is widely known that many organisms encode multiple biochemically-redundant components of the respiratory complexes. In this minireview, the presence of the two cytochrome c oxidases (CcO) in T. thermophilus, the ba3- and caa3-types, is outlined along with functional considerations. We argue for the distinct evolutionary histories of these two CcO including their respective genetic and molecular organizations, with the caa3-oxidase subunits having been initially ‘fused’. Coupled with sequence analysis, the ba3-oxidase crystal structure has provided evolutionary and functional information; for example, its subunit I is more closely related to archaeal sequences than bacterial and the substrate–enzyme interaction is hydrophobic as the elevated growth temperature weakens the electrostatic interactions common in mesophiles. Discussion on the role of cofactors in intra- and intermolecular electron transfer and proton pumping mechanism is also included. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

17.
The cloning vector pMK18 was developed through the fusion of the minimal replicative region from an indigenous plasmid of Thermus sp. ATCC27737, a gene cassette encoding a thermostable resistance to kanamycin, and the replicative origin and multiple cloning site of pUC18. Plasmid pMK18 showed transformation efficiencies from 108 to 109 per microgram of plasmid in Thermus thermophilus HB8 and HB27, both by natural competence and by electroporation. We also show that T. thermophilus HB27 can take pMK18 modified by the Escherichia coli methylation system with the same efficiency as its own DNA. To demonstrate its usefulness as a cloning vector, a gene encoding the β-subunit of a thermostable nitrate reductase was directly cloned in T. thermophilus HB27 from a gene library. Its further transfer to E. coli also proved its utility as a shuttle vector.  相似文献   

18.
19.
Despite the fact that the extreme thermophilic bacteria belonging to the genus Thermus are classified as strict aerobes, we have shown that Thermus thermophilus HB8 (ATCC 27634) can grow anaerobically when nitrate is present in the growth medium. This strain-specific property is encoded by a respiratory nitrate reductase gene cluster (nar) whose expression is induced by anoxia and nitrate (S. Ramírez-Arcos, L. A. Fernández-Herrero, and J. Berenguer, Biochim. Biophys. Acta, 1396:215–1997). We show here that this nar operon can be transferred by conjugation to an aerobic Thermus strain, enabling it to grow under anaerobic conditions. We show that this transfer takes place through a DNase-insensitive mechanism which, as for the Hfr (high frequency of recombination) derivatives of Escherichia coli, can also mobilize other chromosomal markers in a time-dependent way. Three lines of evidence are presented to support a genetic linkage between nar and a conjugative plasmid integrated into the chromosome. First, the nar operon is absent from a plasmid-free derivative and from a closely related strain. Second, we have identified an origin for autonomous replication (oriV) overlapping the last gene of the nar cluster. Finally, the mating time required for the transfer of the nar operon is in good agreement with the time expected if the transfer origin (oriT) were located nearby and downstream of nar.

Most extreme thermophiles that live in geothermal environments are strict anaerobes (3, 11) as a consequence of the adaptation to the low solubility of oxygen at these temperatures. However, members of the genus Thermus constitute an exception to this general rule, being described taxonomically as strictly aerobic chemorganotrophs (2).However, we recently showed that one of the most thermophilic isolates of this genus, Thermus thermophilus HB8, was able to grow anaerobically when nitrate was present in the medium. Biochemical and genetic evidence demonstrated that this ability was related to the synthesis of a membrane-bound respiratory nitrate reductase complex whose protein components, the α (NarG; 136 kDa), β (NarH; 57 kDa), and γ (NarI; 28 kDa) subunits, were homologous (about 48 to 50% sequence identity) to those from mesophilic facultative anaerobes (e.g., Escherichia coli). The genes encoding these subunits were located within a single operon (nar) that was induced under low oxygen concentrations when nitrate was present (21). In contrast to those described for most nitrate reducers, the product of nitrate respiration was secreted to the growth medium through an unknown transporter.We also observed that even a closely related strain, such as T. thermophilus HB27, was unable to grow under such anaerobic conditions (21). Since the main difference between strains HB8 and HB27 of T. thermophilus is the absence of plasmids from the latter, the possibility that the nar operon could be encoded by a transferable genetic element, such as a plasmid, was considered.In this article, we analyze this possibility and demonstrate that the ability to grow by nitrate respiration can be transferred to the aerobic strain T. thermophilus HB27 by conjugation. We also relate this ability to the integration of a nar-carrying conjugative plasmid into the chromosome of T. thermophilus HB8. Moreover, we show that, as for the Hfr strains of E. coli, this integrated plasmid can also mobilize other chromosomal genes in a time-dependent way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号